You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
			
				
					160 lines
				
				4.1 KiB
			
		
		
			
		
	
	
					160 lines
				
				4.1 KiB
			| 
											6 years ago
										 | from common.kalman.simple_kalman import KF1D
 | ||
|  | from selfdrive.config import RADAR_TO_CAMERA
 | ||
|  | 
 | ||
|  | 
 | ||
|  | # the longer lead decels, the more likely it will keep decelerating
 | ||
|  | # TODO is this a good default?
 | ||
|  | _LEAD_ACCEL_TAU = 1.5
 | ||
|  | 
 | ||
|  | # radar tracks
 | ||
|  | SPEED, ACCEL = 0, 1   # Kalman filter states enum
 | ||
|  | 
 | ||
|  | # stationary qualification parameters
 | ||
|  | v_ego_stationary = 4.   # no stationary object flag below this speed
 | ||
|  | 
 | ||
|  | 
 | ||
|  | class Track():
 | ||
|  |   def __init__(self, v_lead, kalman_params):
 | ||
|  |     self.cnt = 0
 | ||
|  |     self.aLeadTau = _LEAD_ACCEL_TAU
 | ||
|  |     self.K_A = kalman_params.A
 | ||
|  |     self.K_C = kalman_params.C
 | ||
|  |     self.K_K = kalman_params.K
 | ||
|  |     self.kf = KF1D([[v_lead], [0.0]], self.K_A, self.K_C, self.K_K)
 | ||
|  | 
 | ||
|  |   def update(self, d_rel, y_rel, v_rel, v_lead, measured):
 | ||
|  |     # relative values, copy
 | ||
|  |     self.dRel = d_rel   # LONG_DIST
 | ||
|  |     self.yRel = y_rel   # -LAT_DIST
 | ||
|  |     self.vRel = v_rel   # REL_SPEED
 | ||
|  |     self.vLead = v_lead
 | ||
|  |     self.measured = measured   # measured or estimate
 | ||
|  | 
 | ||
|  |     # computed velocity and accelerations
 | ||
|  |     if self.cnt > 0:
 | ||
|  |       self.kf.update(self.vLead)
 | ||
|  | 
 | ||
|  |     self.vLeadK = float(self.kf.x[SPEED][0])
 | ||
|  |     self.aLeadK = float(self.kf.x[ACCEL][0])
 | ||
|  | 
 | ||
|  |     # Learn if constant acceleration
 | ||
|  |     if abs(self.aLeadK) < 0.5:
 | ||
|  |       self.aLeadTau = _LEAD_ACCEL_TAU
 | ||
|  |     else:
 | ||
|  |       self.aLeadTau *= 0.9
 | ||
|  | 
 | ||
|  |     self.cnt += 1
 | ||
|  | 
 | ||
|  |   def get_key_for_cluster(self):
 | ||
|  |     # Weigh y higher since radar is inaccurate in this dimension
 | ||
|  |     return [self.dRel, self.yRel*2, self.vRel]
 | ||
|  | 
 | ||
|  |   def reset_a_lead(self, aLeadK, aLeadTau):
 | ||
|  |     self.kf = KF1D([[self.vLead], [aLeadK]], self.K_A, self.K_C, self.K_K)
 | ||
|  |     self.aLeadK = aLeadK
 | ||
|  |     self.aLeadTau = aLeadTau
 | ||
|  | 
 | ||
|  | def mean(l):
 | ||
|  |   return sum(l) / len(l)
 | ||
|  | 
 | ||
|  | 
 | ||
|  | class Cluster():
 | ||
|  |   def __init__(self):
 | ||
|  |     self.tracks = set()
 | ||
|  | 
 | ||
|  |   def add(self, t):
 | ||
|  |     # add the first track
 | ||
|  |     self.tracks.add(t)
 | ||
|  | 
 | ||
|  |   # TODO: make generic
 | ||
|  |   @property
 | ||
|  |   def dRel(self):
 | ||
|  |     return mean([t.dRel for t in self.tracks])
 | ||
|  | 
 | ||
|  |   @property
 | ||
|  |   def yRel(self):
 | ||
|  |     return mean([t.yRel for t in self.tracks])
 | ||
|  | 
 | ||
|  |   @property
 | ||
|  |   def vRel(self):
 | ||
|  |     return mean([t.vRel for t in self.tracks])
 | ||
|  | 
 | ||
|  |   @property
 | ||
|  |   def aRel(self):
 | ||
|  |     return mean([t.aRel for t in self.tracks])
 | ||
|  | 
 | ||
|  |   @property
 | ||
|  |   def vLead(self):
 | ||
|  |     return mean([t.vLead for t in self.tracks])
 | ||
|  | 
 | ||
|  |   @property
 | ||
|  |   def dPath(self):
 | ||
|  |     return mean([t.dPath for t in self.tracks])
 | ||
|  | 
 | ||
|  |   @property
 | ||
|  |   def vLat(self):
 | ||
|  |     return mean([t.vLat for t in self.tracks])
 | ||
|  | 
 | ||
|  |   @property
 | ||
|  |   def vLeadK(self):
 | ||
|  |     return mean([t.vLeadK for t in self.tracks])
 | ||
|  | 
 | ||
|  |   @property
 | ||
|  |   def aLeadK(self):
 | ||
|  |     if all(t.cnt <= 1 for t in self.tracks):
 | ||
|  |       return 0.
 | ||
|  |     else:
 | ||
|  |       return mean([t.aLeadK for t in self.tracks if t.cnt > 1])
 | ||
|  | 
 | ||
|  |   @property
 | ||
|  |   def aLeadTau(self):
 | ||
|  |     if all(t.cnt <= 1 for t in self.tracks):
 | ||
|  |       return _LEAD_ACCEL_TAU
 | ||
|  |     else:
 | ||
|  |       return mean([t.aLeadTau for t in self.tracks if t.cnt > 1])
 | ||
|  | 
 | ||
|  |   @property
 | ||
|  |   def measured(self):
 | ||
|  |     return any(t.measured for t in self.tracks)
 | ||
|  | 
 | ||
|  |   def get_RadarState(self, model_prob=0.0):
 | ||
|  |     return {
 | ||
|  |       "dRel": float(self.dRel),
 | ||
|  |       "yRel": float(self.yRel),
 | ||
|  |       "vRel": float(self.vRel),
 | ||
|  |       "vLead": float(self.vLead),
 | ||
|  |       "vLeadK": float(self.vLeadK),
 | ||
|  |       "aLeadK": float(self.aLeadK),
 | ||
|  |       "status": True,
 | ||
|  |       "fcw": self.is_potential_fcw(model_prob),
 | ||
|  |       "modelProb": model_prob,
 | ||
|  |       "radar": True,
 | ||
|  |       "aLeadTau": float(self.aLeadTau)
 | ||
|  |     }
 | ||
|  | 
 | ||
|  |   def get_RadarState_from_vision(self, lead_msg, v_ego):
 | ||
|  |     return {
 | ||
|  |       "dRel": float(lead_msg.dist - RADAR_TO_CAMERA),
 | ||
|  |       "yRel": float(lead_msg.relY),
 | ||
|  |       "vRel": float(lead_msg.relVel),
 | ||
|  |       "vLead": float(v_ego + lead_msg.relVel),
 | ||
|  |       "vLeadK": float(v_ego + lead_msg.relVel),
 | ||
|  |       "aLeadK": float(0),
 | ||
|  |       "aLeadTau": _LEAD_ACCEL_TAU,
 | ||
|  |       "fcw": False,
 | ||
|  |       "modelProb": float(lead_msg.prob),
 | ||
|  |       "radar": False,
 | ||
|  |       "status": True
 | ||
|  |     }
 | ||
|  | 
 | ||
|  |   def __str__(self):
 | ||
|  |     ret = "x: %4.1f  y: %4.1f  v: %4.1f  a: %4.1f" % (self.dRel, self.yRel, self.vRel, self.aLeadK)
 | ||
|  |     return ret
 | ||
|  | 
 | ||
|  |   def potential_low_speed_lead(self, v_ego):
 | ||
|  |     # stop for stuff in front of you and low speed, even without model confirmation
 | ||
|  |     return abs(self.yRel) < 1.5 and (v_ego < v_ego_stationary) and self.dRel < 25
 | ||
|  | 
 | ||
|  |   def is_potential_fcw(self, model_prob):
 | ||
|  |     return model_prob > .9
 |