You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
			
				
					106 lines
				
				2.9 KiB
			
		
		
			
		
	
	
					106 lines
				
				2.9 KiB
			| 
											3 years ago
										 | #!/usr/bin/env python3
 | ||
|  | import sys
 | ||
|  | import numpy as np
 | ||
|  | import sympy as sp
 | ||
|  | 
 | ||
|  | from selfdrive.locationd.models.constants import ObservationKind
 | ||
|  | from rednose.helpers.ekf_sym import gen_code, EKF_sym
 | ||
|  | 
 | ||
|  | 
 | ||
|  | class LaneKalman():
 | ||
|  |   name = 'lane'
 | ||
|  | 
 | ||
|  |   @staticmethod
 | ||
|  |   def generate_code(generated_dir):
 | ||
|  |     # make functions and jacobians with sympy
 | ||
|  |     #  state variables
 | ||
|  |     dim = 6
 | ||
|  |     state = sp.MatrixSymbol('state', dim, 1)
 | ||
|  | 
 | ||
|  |     dd = sp.Symbol('dd')  # WARNING: NOT TIME
 | ||
|  | 
 | ||
|  |     # Time derivative of the state as a function of state
 | ||
|  |     state_dot = sp.Matrix(np.zeros((dim, 1)))
 | ||
|  |     state_dot[:3,0] = sp.Matrix(state[3:6,0])
 | ||
|  | 
 | ||
|  |     # Basic descretization, 1st order intergrator
 | ||
|  |     # Can be pretty bad if dt is big
 | ||
|  |     f_sym = sp.Matrix(state) + dd*state_dot
 | ||
|  | 
 | ||
|  |     #
 | ||
|  |     # Observation functions
 | ||
|  |     #
 | ||
|  |     h_lane_sym = sp.Matrix(state[:3,0])
 | ||
|  |     obs_eqs = [[h_lane_sym, ObservationKind.LANE_PT, None]]
 | ||
|  |     gen_code(generated_dir, LaneKalman.name, f_sym, dd, state, obs_eqs, dim, dim)
 | ||
|  | 
 | ||
|  |   def __init__(self, generated_dir, pt_std=5):
 | ||
|  |     # state
 | ||
|  |     # left and right lane centers in ecef
 | ||
|  |     # WARNING: this is not a temporal model
 | ||
|  |     # the 'time' in this kalman filter is
 | ||
|  |     # the distance traveled by the vehicle,
 | ||
|  |     # which should approximately be the
 | ||
|  |     # distance along the lane path
 | ||
|  |     # a more logical parametrization
 | ||
|  |     # states 0-2 are ecef coordinates distance d
 | ||
|  |     # states 3-5  is the 3d "velocity" of the
 | ||
|  |     # lane in ecef (m/m).
 | ||
|  |     x_initial = np.array([0,0,0,
 | ||
|  |                           0,0,0])
 | ||
|  | 
 | ||
|  |     # state covariance
 | ||
|  |     P_initial = np.diag([1e16, 1e16, 1e16,
 | ||
|  |                          1**2, 1**2, 1**2])
 | ||
|  | 
 | ||
|  |     # process noise
 | ||
|  |     Q = np.diag([0.1**2, 0.1**2, 0.1**2,
 | ||
|  |                  0.1**2, 0.1**2, 0.1*2])
 | ||
|  | 
 | ||
|  |     self.dim_state = len(x_initial)
 | ||
|  | 
 | ||
|  |     # init filter
 | ||
|  |     self.filter = EKF_sym(generated_dir, self.name, Q, x_initial, P_initial, x_initial.shape[0], P_initial.shape[0])
 | ||
|  |     self.obs_noise = {ObservationKind.LANE_PT: np.diag([pt_std**2]*3)}
 | ||
|  | 
 | ||
|  |   @property
 | ||
|  |   def x(self):
 | ||
|  |     return self.filter.state()
 | ||
|  | 
 | ||
|  |   @property
 | ||
|  |   def P(self):
 | ||
|  |     return self.filter.covs()
 | ||
|  | 
 | ||
|  |   def predict(self, t):
 | ||
|  |     return self.filter.predict(t)
 | ||
|  | 
 | ||
|  |   def rts_smooth(self, estimates):
 | ||
|  |     return self.filter.rts_smooth(estimates, norm_quats=False)
 | ||
|  | 
 | ||
|  | 
 | ||
|  |   def init_state(self, state, covs_diag=None, covs=None, filter_time=None):
 | ||
|  |     if covs_diag is not None:
 | ||
|  |       P = np.diag(covs_diag)
 | ||
|  |     elif covs is not None:
 | ||
|  |       P = covs
 | ||
|  |     else:
 | ||
|  |       P = self.filter.covs()
 | ||
|  |     self.filter.init_state(state, P, filter_time)
 | ||
|  | 
 | ||
|  |   def predict_and_observe(self, t, kind, data):
 | ||
|  |     data = np.atleast_2d(data)
 | ||
|  |     return self.filter.predict_and_update_batch(t, kind, data, self.get_R(kind, len(data)))
 | ||
|  | 
 | ||
|  |   def get_R(self, kind, n):
 | ||
|  |     obs_noise = self.obs_noise[kind]
 | ||
|  |     dim = obs_noise.shape[0]
 | ||
|  |     R = np.zeros((n, dim, dim))
 | ||
|  |     for i in range(n):
 | ||
|  |       R[i,:,:] = obs_noise
 | ||
|  |     return R
 | ||
|  | 
 | ||
|  | 
 | ||
|  | if __name__ == "__main__":
 | ||
|  |   generated_dir = sys.argv[2]
 | ||
|  |   LaneKalman.generate_code(generated_dir)
 |