You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
247 lines
8.1 KiB
247 lines
8.1 KiB
5 years ago
|
#!/usr/bin/env python3
|
||
|
import importlib
|
||
|
import math
|
||
|
from collections import defaultdict, deque
|
||
|
|
||
|
import cereal.messaging as messaging
|
||
|
from cereal import car
|
||
|
from common.numpy_fast import interp
|
||
|
from common.params import Params
|
||
|
from common.realtime import Ratekeeper, set_realtime_priority
|
||
|
from selfdrive.config import RADAR_TO_CAMERA
|
||
|
from selfdrive.controls.lib.cluster.fastcluster_py import cluster_points_centroid
|
||
|
from selfdrive.controls.lib.radar_helpers import Cluster, Track
|
||
|
from selfdrive.swaglog import cloudlog
|
||
|
|
||
|
|
||
|
class KalmanParams():
|
||
|
def __init__(self, dt):
|
||
|
# Lead Kalman Filter params, calculating K from A, C, Q, R requires the control library.
|
||
|
# hardcoding a lookup table to compute K for values of radar_ts between 0.1s and 1.0s
|
||
|
assert dt > .01 and dt < .1, "Radar time step must be between .01s and 0.1s"
|
||
|
self.A = [[1.0, dt], [0.0, 1.0]]
|
||
|
self.C = [1.0, 0.0]
|
||
|
#Q = np.matrix([[10., 0.0], [0.0, 100.]])
|
||
|
#R = 1e3
|
||
|
#K = np.matrix([[ 0.05705578], [ 0.03073241]])
|
||
|
dts = [dt * 0.01 for dt in range(1, 11)]
|
||
|
K0 = [0.12288, 0.14557, 0.16523, 0.18282, 0.19887, 0.21372, 0.22761, 0.24069, 0.2531, 0.26491]
|
||
|
K1 = [0.29666, 0.29331, 0.29043, 0.28787, 0.28555, 0.28342, 0.28144, 0.27958, 0.27783, 0.27617]
|
||
|
self.K = [[interp(dt, dts, K0)], [interp(dt, dts, K1)]]
|
||
|
|
||
|
|
||
|
def laplacian_cdf(x, mu, b):
|
||
|
b = max(b, 1e-4)
|
||
|
return math.exp(-abs(x-mu)/b)
|
||
|
|
||
|
|
||
|
def match_vision_to_cluster(v_ego, lead, clusters):
|
||
|
# match vision point to best statistical cluster match
|
||
|
offset_vision_dist = lead.dist - RADAR_TO_CAMERA
|
||
|
|
||
|
def prob(c):
|
||
|
prob_d = laplacian_cdf(c.dRel, offset_vision_dist, lead.std)
|
||
|
prob_y = laplacian_cdf(c.yRel, lead.relY, lead.relYStd)
|
||
|
prob_v = laplacian_cdf(c.vRel, lead.relVel, lead.relVelStd)
|
||
|
|
||
|
# This is isn't exactly right, but good heuristic
|
||
|
return prob_d * prob_y * prob_v
|
||
|
|
||
|
cluster = max(clusters, key=prob)
|
||
|
|
||
|
# if no 'sane' match is found return -1
|
||
|
# stationary radar points can be false positives
|
||
|
dist_sane = abs(cluster.dRel - offset_vision_dist) < max([(offset_vision_dist)*.25, 5.0])
|
||
|
vel_sane = (abs(cluster.vRel - lead.relVel) < 10) or (v_ego + cluster.vRel > 2)
|
||
|
if dist_sane and vel_sane:
|
||
|
return cluster
|
||
|
else:
|
||
|
return None
|
||
|
|
||
|
|
||
|
def get_lead(v_ego, ready, clusters, lead_msg, low_speed_override=True):
|
||
|
# Determine leads, this is where the essential logic happens
|
||
|
if len(clusters) > 0 and ready and lead_msg.prob > .5:
|
||
|
cluster = match_vision_to_cluster(v_ego, lead_msg, clusters)
|
||
|
else:
|
||
|
cluster = None
|
||
|
|
||
|
lead_dict = {'status': False}
|
||
|
if cluster is not None:
|
||
|
lead_dict = cluster.get_RadarState(lead_msg.prob)
|
||
|
elif (cluster is None) and ready and (lead_msg.prob > .5):
|
||
|
lead_dict = Cluster().get_RadarState_from_vision(lead_msg, v_ego)
|
||
|
|
||
|
if low_speed_override:
|
||
|
low_speed_clusters = [c for c in clusters if c.potential_low_speed_lead(v_ego)]
|
||
|
if len(low_speed_clusters) > 0:
|
||
|
closest_cluster = min(low_speed_clusters, key=lambda c: c.dRel)
|
||
|
|
||
|
# Only choose new cluster if it is actually closer than the previous one
|
||
|
if (not lead_dict['status']) or (closest_cluster.dRel < lead_dict['dRel']):
|
||
|
lead_dict = closest_cluster.get_RadarState()
|
||
|
|
||
|
return lead_dict
|
||
|
|
||
|
|
||
|
class RadarD():
|
||
|
def __init__(self, radar_ts, delay=0):
|
||
|
self.current_time = 0
|
||
|
|
||
|
self.tracks = defaultdict(dict)
|
||
|
self.kalman_params = KalmanParams(radar_ts)
|
||
|
|
||
|
self.last_md_ts = 0
|
||
|
self.last_controls_state_ts = 0
|
||
|
|
||
|
self.active = 0
|
||
|
|
||
|
# v_ego
|
||
|
self.v_ego = 0.
|
||
|
self.v_ego_hist = deque([0], maxlen=delay+1)
|
||
|
|
||
|
self.ready = False
|
||
|
|
||
|
def update(self, frame, sm, rr, has_radar):
|
||
|
self.current_time = 1e-9*max([sm.logMonoTime[key] for key in sm.logMonoTime.keys()])
|
||
|
|
||
|
if sm.updated['controlsState']:
|
||
|
self.active = sm['controlsState'].active
|
||
|
self.v_ego = sm['controlsState'].vEgo
|
||
|
self.v_ego_hist.append(self.v_ego)
|
||
|
if sm.updated['model']:
|
||
|
self.ready = True
|
||
|
|
||
|
ar_pts = {}
|
||
|
for pt in rr.points:
|
||
|
ar_pts[pt.trackId] = [pt.dRel, pt.yRel, pt.vRel, pt.measured]
|
||
|
|
||
|
# *** remove missing points from meta data ***
|
||
|
for ids in list(self.tracks.keys()):
|
||
|
if ids not in ar_pts:
|
||
|
self.tracks.pop(ids, None)
|
||
|
|
||
|
# *** compute the tracks ***
|
||
|
for ids in ar_pts:
|
||
|
rpt = ar_pts[ids]
|
||
|
|
||
|
# align v_ego by a fixed time to align it with the radar measurement
|
||
|
v_lead = rpt[2] + self.v_ego_hist[0]
|
||
|
|
||
|
# create the track if it doesn't exist or it's a new track
|
||
|
if ids not in self.tracks:
|
||
|
self.tracks[ids] = Track(v_lead, self.kalman_params)
|
||
|
self.tracks[ids].update(rpt[0], rpt[1], rpt[2], v_lead, rpt[3])
|
||
|
|
||
|
idens = list(sorted(self.tracks.keys()))
|
||
|
track_pts = list([self.tracks[iden].get_key_for_cluster() for iden in idens])
|
||
|
|
||
|
|
||
|
# If we have multiple points, cluster them
|
||
|
if len(track_pts) > 1:
|
||
|
cluster_idxs = cluster_points_centroid(track_pts, 2.5)
|
||
|
clusters = [None] * (max(cluster_idxs) + 1)
|
||
|
|
||
|
for idx in range(len(track_pts)):
|
||
|
cluster_i = cluster_idxs[idx]
|
||
|
if clusters[cluster_i] is None:
|
||
|
clusters[cluster_i] = Cluster()
|
||
|
clusters[cluster_i].add(self.tracks[idens[idx]])
|
||
|
elif len(track_pts) == 1:
|
||
|
# FIXME: cluster_point_centroid hangs forever if len(track_pts) == 1
|
||
|
cluster_idxs = [0]
|
||
|
clusters = [Cluster()]
|
||
|
clusters[0].add(self.tracks[idens[0]])
|
||
|
else:
|
||
|
clusters = []
|
||
|
|
||
|
# if a new point, reset accel to the rest of the cluster
|
||
|
for idx in range(len(track_pts)):
|
||
|
if self.tracks[idens[idx]].cnt <= 1:
|
||
|
aLeadK = clusters[cluster_idxs[idx]].aLeadK
|
||
|
aLeadTau = clusters[cluster_idxs[idx]].aLeadTau
|
||
|
self.tracks[idens[idx]].reset_a_lead(aLeadK, aLeadTau)
|
||
|
|
||
|
# *** publish radarState ***
|
||
|
dat = messaging.new_message()
|
||
|
dat.init('radarState')
|
||
|
dat.valid = sm.all_alive_and_valid(service_list=['controlsState', 'model'])
|
||
|
dat.radarState.mdMonoTime = self.last_md_ts
|
||
|
dat.radarState.canMonoTimes = list(rr.canMonoTimes)
|
||
|
dat.radarState.radarErrors = list(rr.errors)
|
||
|
dat.radarState.controlsStateMonoTime = self.last_controls_state_ts
|
||
|
|
||
|
if has_radar:
|
||
|
dat.radarState.leadOne = get_lead(self.v_ego, self.ready, clusters, sm['model'].lead, low_speed_override=True)
|
||
|
dat.radarState.leadTwo = get_lead(self.v_ego, self.ready, clusters, sm['model'].leadFuture, low_speed_override=False)
|
||
|
return dat
|
||
|
|
||
|
|
||
|
# fuses camera and radar data for best lead detection
|
||
|
def radard_thread(sm=None, pm=None, can_sock=None):
|
||
|
set_realtime_priority(2)
|
||
|
|
||
|
# wait for stats about the car to come in from controls
|
||
|
cloudlog.info("radard is waiting for CarParams")
|
||
|
CP = car.CarParams.from_bytes(Params().get("CarParams", block=True))
|
||
|
cloudlog.info("radard got CarParams")
|
||
|
|
||
|
# import the radar from the fingerprint
|
||
|
cloudlog.info("radard is importing %s", CP.carName)
|
||
|
RadarInterface = importlib.import_module('selfdrive.car.%s.radar_interface' % CP.carName).RadarInterface
|
||
|
|
||
|
if can_sock is None:
|
||
|
can_sock = messaging.sub_sock('can')
|
||
|
|
||
|
if sm is None:
|
||
|
sm = messaging.SubMaster(['model', 'controlsState', 'liveParameters'])
|
||
|
|
||
|
# *** publish radarState and liveTracks
|
||
|
if pm is None:
|
||
|
pm = messaging.PubMaster(['radarState', 'liveTracks'])
|
||
|
|
||
|
RI = RadarInterface(CP)
|
||
|
|
||
|
rk = Ratekeeper(1.0 / CP.radarTimeStep, print_delay_threshold=None)
|
||
|
RD = RadarD(CP.radarTimeStep, RI.delay)
|
||
|
|
||
|
has_radar = not CP.radarOffCan
|
||
|
|
||
|
while 1:
|
||
|
can_strings = messaging.drain_sock_raw(can_sock, wait_for_one=True)
|
||
|
rr = RI.update(can_strings)
|
||
|
|
||
|
if rr is None:
|
||
|
continue
|
||
|
|
||
|
sm.update(0)
|
||
|
|
||
|
dat = RD.update(rk.frame, sm, rr, has_radar)
|
||
|
dat.radarState.cumLagMs = -rk.remaining*1000.
|
||
|
|
||
|
pm.send('radarState', dat)
|
||
|
|
||
|
# *** publish tracks for UI debugging (keep last) ***
|
||
|
tracks = RD.tracks
|
||
|
dat = messaging.new_message()
|
||
|
dat.init('liveTracks', len(tracks))
|
||
|
|
||
|
for cnt, ids in enumerate(sorted(tracks.keys())):
|
||
|
dat.liveTracks[cnt] = {
|
||
|
"trackId": ids,
|
||
|
"dRel": float(tracks[ids].dRel),
|
||
|
"yRel": float(tracks[ids].yRel),
|
||
|
"vRel": float(tracks[ids].vRel),
|
||
|
}
|
||
|
pm.send('liveTracks', dat)
|
||
|
|
||
|
rk.monitor_time()
|
||
|
|
||
|
|
||
|
def main(sm=None, pm=None, can_sock=None):
|
||
|
radard_thread(sm, pm, can_sock)
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
main()
|