openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

142 lines
4.7 KiB

import numpy as np
from common.transformations.camera import eon_focal_length, \
getting ready for Python 3 (#619) * tabs to spaces python 2 to 3: https://portingguide.readthedocs.io/en/latest/syntax.html#tabs-and-spaces * use the new except syntax python 2 to 3: https://portingguide.readthedocs.io/en/latest/exceptions.html#the-new-except-syntax * make relative imports absolute python 2 to 3: https://portingguide.readthedocs.io/en/latest/imports.html#absolute-imports * Queue renamed to queue in python 3 Use the six compatibility library to support both python 2 and 3: https://portingguide.readthedocs.io/en/latest/stdlib-reorg.html#renamed-modules * replace dict.has_key() with in python 2 to 3: https://portingguide.readthedocs.io/en/latest/dicts.html#removed-dict-has-key * make dict views compatible with python 3 python 2 to 3: https://portingguide.readthedocs.io/en/latest/dicts.html#dict-views-and-iterators Where needed, wrapping things that will be a view in python 3 with a list(). For example, if it's accessed with [] Python 3 has no iter*() methods, so just using the values() instead of itervalues() as long as it's not too performance intensive. Note that any minor performance hit of using a list instead of a view will go away when switching to python 3. If it is intensive, we could use the six version. * Explicitly use truncating division python 2 to 3: https://portingguide.readthedocs.io/en/latest/numbers.html#division python 3 treats / as float division. When we want the result to be an integer, use // * replace map() with list comprehension where a list result is needed. In python 3, map() returns an iterator. python 2 to 3: https://portingguide.readthedocs.io/en/latest/iterators.html#new-behavior-of-map-and-filter * replace filter() with list comprehension In python 3, filter() returns an interatoooooooooooor. python 2 to 3: https://portingguide.readthedocs.io/en/latest/iterators.html#new-behavior-of-map-and-filter * wrap zip() in list() where we need the result to be a list python 2 to 3: https://portingguide.readthedocs.io/en/latest/iterators.html#new-behavior-of-zip * clean out some lint Removes these pylint warnings: ************* Module selfdrive.car.chrysler.chryslercan W: 15, 0: Unnecessary semicolon (unnecessary-semicolon) W: 16, 0: Unnecessary semicolon (unnecessary-semicolon) W: 25, 0: Unnecessary semicolon (unnecessary-semicolon) ************* Module common.dbc W:101, 0: Anomalous backslash in string: '\?'. String constant might be missing an r prefix. (anomalous-backslash-in-string) ************* Module selfdrive.car.gm.interface R:102, 6: Redefinition of ret.minEnableSpeed type from float to int (redefined-variable-type) R:103, 6: Redefinition of ret.mass type from int to float (redefined-variable-type) ************* Module selfdrive.updated R: 20, 6: Redefinition of r type from int to str (redefined-variable-type)
6 years ago
vp_from_ke, \
get_view_frame_from_road_frame, \
FULL_FRAME_SIZE
# segnet
SEGNET_SIZE = (512, 384)
segnet_frame_from_camera_frame = np.array([
[float(SEGNET_SIZE[0])/FULL_FRAME_SIZE[0], 0., ],
[ 0., float(SEGNET_SIZE[1])/FULL_FRAME_SIZE[1]]])
# model
MODEL_INPUT_SIZE = (320, 160)
MODEL_YUV_SIZE = (MODEL_INPUT_SIZE[0], MODEL_INPUT_SIZE[1] * 3 // 2)
MODEL_CX = MODEL_INPUT_SIZE[0]/2.
MODEL_CY = 21.
model_zoom = 1.25
model_height = 1.22
# canonical model transform
model_intrinsics = np.array(
[[ eon_focal_length / model_zoom, 0. , MODEL_CX],
[ 0. , eon_focal_length / model_zoom, MODEL_CY],
[ 0. , 0. , 1.]])
# MED model
MEDMODEL_INPUT_SIZE = (512, 256)
MEDMODEL_YUV_SIZE = (MEDMODEL_INPUT_SIZE[0], MEDMODEL_INPUT_SIZE[1] * 3 // 2)
MEDMODEL_CY = 47.6
medmodel_zoom = 1.
medmodel_intrinsics = np.array(
[[ eon_focal_length / medmodel_zoom, 0. , 0.5 * MEDMODEL_INPUT_SIZE[0]],
[ 0. , eon_focal_length / medmodel_zoom, MEDMODEL_CY],
[ 0. , 0. , 1.]])
# BIG model
BIGMODEL_INPUT_SIZE = (864, 288)
BIGMODEL_YUV_SIZE = (BIGMODEL_INPUT_SIZE[0], BIGMODEL_INPUT_SIZE[1] * 3 // 2)
bigmodel_zoom = 1.
bigmodel_intrinsics = np.array(
[[ eon_focal_length / bigmodel_zoom, 0. , 0.5 * BIGMODEL_INPUT_SIZE[0]],
[ 0. , eon_focal_length / bigmodel_zoom, 0.2 * BIGMODEL_INPUT_SIZE[1]],
[ 0. , 0. , 1.]])
bigmodel_border = np.array([
[0,0,1],
[BIGMODEL_INPUT_SIZE[0], 0, 1],
[BIGMODEL_INPUT_SIZE[0], BIGMODEL_INPUT_SIZE[1], 1],
[0, BIGMODEL_INPUT_SIZE[1], 1],
])
model_frame_from_road_frame = np.dot(model_intrinsics,
get_view_frame_from_road_frame(0, 0, 0, model_height))
bigmodel_frame_from_road_frame = np.dot(bigmodel_intrinsics,
get_view_frame_from_road_frame(0, 0, 0, model_height))
medmodel_frame_from_road_frame = np.dot(medmodel_intrinsics,
get_view_frame_from_road_frame(0, 0, 0, model_height))
model_frame_from_bigmodel_frame = np.dot(model_intrinsics, np.linalg.inv(bigmodel_intrinsics))
# 'camera from model camera'
def get_model_height_transform(camera_frame_from_road_frame, height):
camera_frame_from_road_ground = np.dot(camera_frame_from_road_frame, np.array([
[1, 0, 0],
[0, 1, 0],
[0, 0, 0],
[0, 0, 1],
]))
camera_frame_from_road_high = np.dot(camera_frame_from_road_frame, np.array([
[1, 0, 0],
[0, 1, 0],
[0, 0, height - model_height],
[0, 0, 1],
]))
road_high_from_camera_frame = np.linalg.inv(camera_frame_from_road_high)
high_camera_from_low_camera = np.dot(camera_frame_from_road_ground, road_high_from_camera_frame)
return high_camera_from_low_camera
# camera_frame_from_model_frame aka 'warp matrix'
# was: calibration.h/CalibrationTransform
def get_camera_frame_from_model_frame(camera_frame_from_road_frame, height=model_height):
vp = vp_from_ke(camera_frame_from_road_frame)
model_camera_from_model_frame = np.array([
[model_zoom, 0., vp[0] - MODEL_CX * model_zoom],
[ 0., model_zoom, vp[1] - MODEL_CY * model_zoom],
[ 0., 0., 1.],
])
# This function is super slow, so skip it if height is very close to canonical
# TODO: speed it up!
if abs(height - model_height) > 0.001: #
camera_from_model_camera = get_model_height_transform(camera_frame_from_road_frame, height)
else:
camera_from_model_camera = np.eye(3)
return np.dot(camera_from_model_camera, model_camera_from_model_frame)
def get_camera_frame_from_bigmodel_frame(camera_frame_from_road_frame):
camera_frame_from_ground = camera_frame_from_road_frame[:, (0, 1, 3)]
bigmodel_frame_from_ground = bigmodel_frame_from_road_frame[:, (0, 1, 3)]
ground_from_bigmodel_frame = np.linalg.inv(bigmodel_frame_from_ground)
camera_frame_from_bigmodel_frame = np.dot(camera_frame_from_ground, ground_from_bigmodel_frame)
return camera_frame_from_bigmodel_frame
def get_model_frame(snu_full, camera_frame_from_model_frame, size):
idxs = camera_frame_from_model_frame.dot(np.column_stack([np.tile(np.arange(size[0]), size[1]),
np.tile(np.arange(size[1]), (size[0],1)).T.flatten(),
np.ones(size[0] * size[1])]).T).T.astype(int)
calib_flat = snu_full[idxs[:,1], idxs[:,0]]
if len(snu_full.shape) == 3:
calib = calib_flat.reshape((size[1], size[0], 3))
elif len(snu_full.shape) == 2:
calib = calib_flat.reshape((size[1], size[0]))
else:
raise ValueError("shape of input img is weird")
return calib