openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

351 lines
13 KiB

#include "selfdrive/ui/ui.h"
#include <cassert>
#include <cmath>
#include <QtConcurrent>
#include "common/transformations/orientation.hpp"
#include "common/params.h"
#include "common/swaglog.h"
#include "common/util.h"
#include "common/watchdog.h"
#include "system/hardware/hw.h"
#define BACKLIGHT_DT 0.05
#define BACKLIGHT_TS 10.00
// Projects a point in car to space to the corresponding point in full frame
// image space.
static bool calib_frame_to_full_frame(const UIState *s, float in_x, float in_y, float in_z, QPointF *out) {
const float margin = 500.0f;
const QRectF clip_region{-margin, -margin, s->fb_w + 2 * margin, s->fb_h + 2 * margin};
const vec3 pt = (vec3){{in_x, in_y, in_z}};
const vec3 Ep = matvecmul3(s->scene.wide_cam ? s->scene.view_from_wide_calib : s->scene.view_from_calib, pt);
const vec3 KEp = matvecmul3(s->scene.wide_cam ? ECAM_INTRINSIC_MATRIX : FCAM_INTRINSIC_MATRIX, Ep);
// Project.
QPointF point = s->car_space_transform.map(QPointF{KEp.v[0] / KEp.v[2], KEp.v[1] / KEp.v[2]});
if (clip_region.contains(point)) {
*out = point;
return true;
}
return false;
}
int get_path_length_idx(const cereal::XYZTData::Reader &line, const float path_height) {
const auto line_x = line.getX();
int max_idx = 0;
for (int i = 1; i < TRAJECTORY_SIZE && line_x[i] <= path_height; ++i) {
max_idx = i;
}
return max_idx;
}
void update_leads(UIState *s, const cereal::RadarState::Reader &radar_state, const cereal::XYZTData::Reader &line) {
for (int i = 0; i < 2; ++i) {
auto lead_data = (i == 0) ? radar_state.getLeadOne() : radar_state.getLeadTwo();
if (lead_data.getStatus()) {
float z = line.getZ()[get_path_length_idx(line, lead_data.getDRel())];
calib_frame_to_full_frame(s, lead_data.getDRel(), -lead_data.getYRel(), z + 1.22, &s->scene.lead_vertices[i]);
}
}
}
void update_line_data(const UIState *s, const cereal::XYZTData::Reader &line,
float y_off, float z_off, QPolygonF *pvd, int max_idx, bool allow_invert=true) {
const auto line_x = line.getX(), line_y = line.getY(), line_z = line.getZ();
QPolygonF left_points, right_points;
left_points.reserve(max_idx + 1);
right_points.reserve(max_idx + 1);
for (int i = 0; i <= max_idx; i++) {
// highly negative x positions are drawn above the frame and cause flickering, clip to zy plane of camera
if (line_x[i] < 0) continue;
QPointF left, right;
bool l = calib_frame_to_full_frame(s, line_x[i], line_y[i] - y_off, line_z[i] + z_off, &left);
bool r = calib_frame_to_full_frame(s, line_x[i], line_y[i] + y_off, line_z[i] + z_off, &right);
if (l && r) {
// For wider lines the drawn polygon will "invert" when going over a hill and cause artifacts
if (!allow_invert && left_points.size() && left.y() > left_points.back().y()) {
continue;
}
left_points.push_back(left);
right_points.push_front(right);
}
}
*pvd = left_points + right_points;
}
void update_model(UIState *s,
const cereal::ModelDataV2::Reader &model,
const cereal::UiPlan::Reader &plan) {
UIScene &scene = s->scene;
auto plan_position = plan.getPosition();
if (plan_position.getX().size() < TRAJECTORY_SIZE){
plan_position = model.getPosition();
}
float max_distance = std::clamp(plan_position.getX()[TRAJECTORY_SIZE - 1],
MIN_DRAW_DISTANCE, MAX_DRAW_DISTANCE);
// update lane lines
const auto lane_lines = model.getLaneLines();
const auto lane_line_probs = model.getLaneLineProbs();
int max_idx = get_path_length_idx(lane_lines[0], max_distance);
for (int i = 0; i < std::size(scene.lane_line_vertices); i++) {
scene.lane_line_probs[i] = lane_line_probs[i];
update_line_data(s, lane_lines[i], 0.025 * scene.lane_line_probs[i], 0, &scene.lane_line_vertices[i], max_idx);
}
// update road edges
const auto road_edges = model.getRoadEdges();
const auto road_edge_stds = model.getRoadEdgeStds();
for (int i = 0; i < std::size(scene.road_edge_vertices); i++) {
scene.road_edge_stds[i] = road_edge_stds[i];
update_line_data(s, road_edges[i], 0.025, 0, &scene.road_edge_vertices[i], max_idx);
}
// update path
auto lead_one = (*s->sm)["radarState"].getRadarState().getLeadOne();
if (lead_one.getStatus()) {
const float lead_d = lead_one.getDRel() * 2.;
max_distance = std::clamp((float)(lead_d - fmin(lead_d * 0.35, 10.)), 0.0f, max_distance);
}
max_idx = get_path_length_idx(plan_position, max_distance);
update_line_data(s, plan_position, 0.9, 1.22, &scene.track_vertices, max_idx, false);
}
void update_dmonitoring(UIState *s, const cereal::DriverStateV2::Reader &driverstate, float dm_fade_state, bool is_rhd) {
UIScene &scene = s->scene;
const auto driver_orient = is_rhd ? driverstate.getRightDriverData().getFaceOrientation() : driverstate.getLeftDriverData().getFaceOrientation();
for (int i = 0; i < std::size(scene.driver_pose_vals); i++) {
float v_this = (i == 0 ? (driver_orient[i] < 0 ? 0.7 : 0.9) : 0.4) * driver_orient[i];
scene.driver_pose_diff[i] = fabs(scene.driver_pose_vals[i] - v_this);
scene.driver_pose_vals[i] = 0.8 * v_this + (1 - 0.8) * scene.driver_pose_vals[i];
scene.driver_pose_sins[i] = sinf(scene.driver_pose_vals[i]*(1.0-dm_fade_state));
scene.driver_pose_coss[i] = cosf(scene.driver_pose_vals[i]*(1.0-dm_fade_state));
}
const mat3 r_xyz = (mat3){{
scene.driver_pose_coss[1]*scene.driver_pose_coss[2],
scene.driver_pose_coss[1]*scene.driver_pose_sins[2],
-scene.driver_pose_sins[1],
-scene.driver_pose_sins[0]*scene.driver_pose_sins[1]*scene.driver_pose_coss[2] - scene.driver_pose_coss[0]*scene.driver_pose_sins[2],
-scene.driver_pose_sins[0]*scene.driver_pose_sins[1]*scene.driver_pose_sins[2] + scene.driver_pose_coss[0]*scene.driver_pose_coss[2],
-scene.driver_pose_sins[0]*scene.driver_pose_coss[1],
scene.driver_pose_coss[0]*scene.driver_pose_sins[1]*scene.driver_pose_coss[2] - scene.driver_pose_sins[0]*scene.driver_pose_sins[2],
scene.driver_pose_coss[0]*scene.driver_pose_sins[1]*scene.driver_pose_sins[2] + scene.driver_pose_sins[0]*scene.driver_pose_coss[2],
scene.driver_pose_coss[0]*scene.driver_pose_coss[1],
}};
// transform vertices
for (int kpi = 0; kpi < std::size(default_face_kpts_3d); kpi++) {
vec3 kpt_this = default_face_kpts_3d[kpi];
kpt_this = matvecmul3(r_xyz, kpt_this);
scene.face_kpts_draw[kpi] = (vec3){{(float)kpt_this.v[0], (float)kpt_this.v[1], (float)(kpt_this.v[2] * (1.0-dm_fade_state) + 8 * dm_fade_state)}};
}
}
static void update_sockets(UIState *s) {
s->sm->update(0);
}
static void update_state(UIState *s) {
SubMaster &sm = *(s->sm);
UIScene &scene = s->scene;
if (sm.updated("liveCalibration")) {
auto live_calib = sm["liveCalibration"].getLiveCalibration();
auto rpy_list = live_calib.getRpyCalib();
auto wfde_list = live_calib.getWideFromDeviceEuler();
Eigen::Vector3d rpy;
Eigen::Vector3d wfde;
if (rpy_list.size() == 3) rpy << rpy_list[0], rpy_list[1], rpy_list[2];
if (wfde_list.size() == 3) wfde << wfde_list[0], wfde_list[1], wfde_list[2];
Eigen::Matrix3d device_from_calib = euler2rot(rpy);
Eigen::Matrix3d wide_from_device = euler2rot(wfde);
Eigen::Matrix3d view_from_device;
view_from_device << 0,1,0,
0,0,1,
1,0,0;
Eigen::Matrix3d view_from_calib = view_from_device * device_from_calib;
Eigen::Matrix3d view_from_wide_calib = view_from_device * wide_from_device * device_from_calib ;
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
scene.view_from_calib.v[i*3 + j] = view_from_calib(i,j);
scene.view_from_wide_calib.v[i*3 + j] = view_from_wide_calib(i,j);
}
}
scene.calibration_valid = live_calib.getCalStatus() == cereal::LiveCalibrationData::Status::CALIBRATED;
scene.calibration_wide_valid = wfde_list.size() == 3;
}
if (sm.updated("pandaStates")) {
auto pandaStates = sm["pandaStates"].getPandaStates();
if (pandaStates.size() > 0) {
scene.pandaType = pandaStates[0].getPandaType();
if (scene.pandaType != cereal::PandaState::PandaType::UNKNOWN) {
scene.ignition = false;
for (const auto& pandaState : pandaStates) {
scene.ignition |= pandaState.getIgnitionLine() || pandaState.getIgnitionCan();
}
}
}
} else if ((s->sm->frame - s->sm->rcv_frame("pandaStates")) > 5*UI_FREQ) {
scene.pandaType = cereal::PandaState::PandaType::UNKNOWN;
}
if (sm.updated("carParams")) {
scene.longitudinal_control = sm["carParams"].getCarParams().getOpenpilotLongitudinalControl();
}
if (sm.updated("wideRoadCameraState")) {
auto cam_state = sm["wideRoadCameraState"].getWideRoadCameraState();
float scale = (cam_state.getSensor() == cereal::FrameData::ImageSensor::AR0231) ? 6.0f : 1.0f;
scene.light_sensor = std::max(100.0f - scale * cam_state.getExposureValPercent(), 0.0f);
}
scene.started = sm["deviceState"].getDeviceState().getStarted() && scene.ignition;
}
void ui_update_params(UIState *s) {
auto params = Params();
s->scene.is_metric = params.getBool("IsMetric");
s->scene.map_on_left = params.getBool("NavSettingLeftSide");
}
void UIState::updateStatus() {
if (scene.started && sm->updated("controlsState")) {
auto controls_state = (*sm)["controlsState"].getControlsState();
auto state = controls_state.getState();
if (state == cereal::ControlsState::OpenpilotState::PRE_ENABLED || state == cereal::ControlsState::OpenpilotState::OVERRIDING) {
status = STATUS_OVERRIDE;
} else {
status = controls_state.getEnabled() ? STATUS_ENGAGED : STATUS_DISENGAGED;
}
}
// Handle onroad/offroad transition
if (scene.started != started_prev || sm->frame == 1) {
if (scene.started) {
status = STATUS_DISENGAGED;
scene.started_frame = sm->frame;
}
started_prev = scene.started;
emit offroadTransition(!scene.started);
}
}
UIState::UIState(QObject *parent) : QObject(parent) {
sm = std::make_unique<SubMaster, const std::initializer_list<const char *>>({
"modelV2", "controlsState", "liveCalibration", "radarState", "deviceState", "roadCameraState",
"pandaStates", "carParams", "driverMonitoringState", "carState", "liveLocationKalman", "driverStateV2",
"wideRoadCameraState", "managerState", "navInstruction", "navRoute", "uiPlan",
});
Params params;
prime_type = std::atoi(params.get("PrimeType").c_str());
language = QString::fromStdString(params.get("LanguageSetting"));
// update timer
timer = new QTimer(this);
QObject::connect(timer, &QTimer::timeout, this, &UIState::update);
timer->start(1000 / UI_FREQ);
}
void UIState::update() {
update_sockets(this);
update_state(this);
updateStatus();
if (sm->frame % UI_FREQ == 0) {
watchdog_kick(nanos_since_boot());
}
emit uiUpdate(*this);
}
void UIState::setPrimeType(int type) {
if (type != prime_type) {
prime_type = type;
Params().put("PrimeType", std::to_string(prime_type));
emit primeTypeChanged(prime_type);
}
}
Device::Device(QObject *parent) : brightness_filter(BACKLIGHT_OFFROAD, BACKLIGHT_TS, BACKLIGHT_DT), QObject(parent) {
setAwake(true);
resetInteractiveTimeout();
QObject::connect(uiState(), &UIState::uiUpdate, this, &Device::update);
}
void Device::update(const UIState &s) {
updateBrightness(s);
updateWakefulness(s);
}
void Device::setAwake(bool on) {
if (on != awake) {
awake = on;
Hardware::set_display_power(awake);
LOGD("setting display power %d", awake);
emit displayPowerChanged(awake);
}
}
void Device::resetInteractiveTimeout() {
interactive_timeout = (ignition_on ? 10 : 30) * UI_FREQ;
}
void Device::updateBrightness(const UIState &s) {
float clipped_brightness = offroad_brightness;
if (s.scene.started) {
clipped_brightness = s.scene.light_sensor;
// CIE 1931 - https://www.photonstophotos.net/GeneralTopics/Exposure/Psychometric_Lightness_and_Gamma.htm
if (clipped_brightness <= 8) {
clipped_brightness = (clipped_brightness / 903.3);
} else {
clipped_brightness = std::pow((clipped_brightness + 16.0) / 116.0, 3.0);
}
// Scale back to 10% to 100%
clipped_brightness = std::clamp(100.0f * clipped_brightness, 10.0f, 100.0f);
}
int brightness = brightness_filter.update(clipped_brightness);
if (!awake) {
brightness = 0;
}
if (brightness != last_brightness) {
if (!brightness_future.isRunning()) {
brightness_future = QtConcurrent::run(Hardware::set_brightness, brightness);
last_brightness = brightness;
}
}
}
void Device::updateWakefulness(const UIState &s) {
bool ignition_just_turned_off = !s.scene.ignition && ignition_on;
ignition_on = s.scene.ignition;
if (ignition_just_turned_off) {
resetInteractiveTimeout();
} else if (interactive_timeout > 0 && --interactive_timeout == 0) {
emit interactiveTimeout();
}
setAwake(s.scene.ignition || interactive_timeout > 0);
}
UIState *uiState() {
static UIState ui_state;
return &ui_state;
}
Device *device() {
static Device _device;
return &_device;
}