openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

299 lines
8.9 KiB

namespace Eigen {
namespace internal {
template <typename Scalar>
void lmpar(
Matrix< Scalar, Dynamic, Dynamic > &r,
const VectorXi &ipvt,
const Matrix< Scalar, Dynamic, 1 > &diag,
const Matrix< Scalar, Dynamic, 1 > &qtb,
Scalar delta,
Scalar &par,
Matrix< Scalar, Dynamic, 1 > &x)
{
using std::abs;
using std::sqrt;
typedef DenseIndex Index;
/* Local variables */
Index i, j, l;
Scalar fp;
Scalar parc, parl;
Index iter;
Scalar temp, paru;
Scalar gnorm;
Scalar dxnorm;
/* Function Body */
const Scalar dwarf = (std::numeric_limits<Scalar>::min)();
const Index n = r.cols();
eigen_assert(n==diag.size());
eigen_assert(n==qtb.size());
eigen_assert(n==x.size());
Matrix< Scalar, Dynamic, 1 > wa1, wa2;
/* compute and store in x the gauss-newton direction. if the */
/* jacobian is rank-deficient, obtain a least squares solution. */
Index nsing = n-1;
wa1 = qtb;
for (j = 0; j < n; ++j) {
if (r(j,j) == 0. && nsing == n-1)
nsing = j - 1;
if (nsing < n-1)
wa1[j] = 0.;
}
for (j = nsing; j>=0; --j) {
wa1[j] /= r(j,j);
temp = wa1[j];
for (i = 0; i < j ; ++i)
wa1[i] -= r(i,j) * temp;
}
for (j = 0; j < n; ++j)
x[ipvt[j]] = wa1[j];
/* initialize the iteration counter. */
/* evaluate the function at the origin, and test */
/* for acceptance of the gauss-newton direction. */
iter = 0;
wa2 = diag.cwiseProduct(x);
dxnorm = wa2.blueNorm();
fp = dxnorm - delta;
if (fp <= Scalar(0.1) * delta) {
par = 0;
return;
}
/* if the jacobian is not rank deficient, the newton */
/* step provides a lower bound, parl, for the zero of */
/* the function. otherwise set this bound to zero. */
parl = 0.;
if (nsing >= n-1) {
for (j = 0; j < n; ++j) {
l = ipvt[j];
wa1[j] = diag[l] * (wa2[l] / dxnorm);
}
// it's actually a triangularView.solveInplace(), though in a weird
// way:
for (j = 0; j < n; ++j) {
Scalar sum = 0.;
for (i = 0; i < j; ++i)
sum += r(i,j) * wa1[i];
wa1[j] = (wa1[j] - sum) / r(j,j);
}
temp = wa1.blueNorm();
parl = fp / delta / temp / temp;
}
/* calculate an upper bound, paru, for the zero of the function. */
for (j = 0; j < n; ++j)
wa1[j] = r.col(j).head(j+1).dot(qtb.head(j+1)) / diag[ipvt[j]];
gnorm = wa1.stableNorm();
paru = gnorm / delta;
if (paru == 0.)
paru = dwarf / (std::min)(delta,Scalar(0.1));
/* if the input par lies outside of the interval (parl,paru), */
/* set par to the closer endpoint. */
par = (std::max)(par,parl);
par = (std::min)(par,paru);
if (par == 0.)
par = gnorm / dxnorm;
/* beginning of an iteration. */
while (true) {
++iter;
/* evaluate the function at the current value of par. */
if (par == 0.)
par = (std::max)(dwarf,Scalar(.001) * paru); /* Computing MAX */
wa1 = sqrt(par)* diag;
Matrix< Scalar, Dynamic, 1 > sdiag(n);
qrsolv<Scalar>(r, ipvt, wa1, qtb, x, sdiag);
wa2 = diag.cwiseProduct(x);
dxnorm = wa2.blueNorm();
temp = fp;
fp = dxnorm - delta;
/* if the function is small enough, accept the current value */
/* of par. also test for the exceptional cases where parl */
/* is zero or the number of iterations has reached 10. */
if (abs(fp) <= Scalar(0.1) * delta || (parl == 0. && fp <= temp && temp < 0.) || iter == 10)
break;
/* compute the newton correction. */
for (j = 0; j < n; ++j) {
l = ipvt[j];
wa1[j] = diag[l] * (wa2[l] / dxnorm);
}
for (j = 0; j < n; ++j) {
wa1[j] /= sdiag[j];
temp = wa1[j];
for (i = j+1; i < n; ++i)
wa1[i] -= r(i,j) * temp;
}
temp = wa1.blueNorm();
parc = fp / delta / temp / temp;
/* depending on the sign of the function, update parl or paru. */
if (fp > 0.)
parl = (std::max)(parl,par);
if (fp < 0.)
paru = (std::min)(paru,par);
/* compute an improved estimate for par. */
/* Computing MAX */
par = (std::max)(parl,par+parc);
/* end of an iteration. */
}
/* termination. */
if (iter == 0)
par = 0.;
return;
}
template <typename Scalar>
void lmpar2(
const ColPivHouseholderQR<Matrix< Scalar, Dynamic, Dynamic> > &qr,
const Matrix< Scalar, Dynamic, 1 > &diag,
const Matrix< Scalar, Dynamic, 1 > &qtb,
Scalar delta,
Scalar &par,
Matrix< Scalar, Dynamic, 1 > &x)
{
using std::sqrt;
using std::abs;
typedef DenseIndex Index;
/* Local variables */
Index j;
Scalar fp;
Scalar parc, parl;
Index iter;
Scalar temp, paru;
Scalar gnorm;
Scalar dxnorm;
/* Function Body */
const Scalar dwarf = (std::numeric_limits<Scalar>::min)();
const Index n = qr.matrixQR().cols();
eigen_assert(n==diag.size());
eigen_assert(n==qtb.size());
Matrix< Scalar, Dynamic, 1 > wa1, wa2;
/* compute and store in x the gauss-newton direction. if the */
/* jacobian is rank-deficient, obtain a least squares solution. */
// const Index rank = qr.nonzeroPivots(); // exactly double(0.)
const Index rank = qr.rank(); // use a threshold
wa1 = qtb;
wa1.tail(n-rank).setZero();
qr.matrixQR().topLeftCorner(rank, rank).template triangularView<Upper>().solveInPlace(wa1.head(rank));
x = qr.colsPermutation()*wa1;
/* initialize the iteration counter. */
/* evaluate the function at the origin, and test */
/* for acceptance of the gauss-newton direction. */
iter = 0;
wa2 = diag.cwiseProduct(x);
dxnorm = wa2.blueNorm();
fp = dxnorm - delta;
if (fp <= Scalar(0.1) * delta) {
par = 0;
return;
}
/* if the jacobian is not rank deficient, the newton */
/* step provides a lower bound, parl, for the zero of */
/* the function. otherwise set this bound to zero. */
parl = 0.;
if (rank==n) {
wa1 = qr.colsPermutation().inverse() * diag.cwiseProduct(wa2)/dxnorm;
qr.matrixQR().topLeftCorner(n, n).transpose().template triangularView<Lower>().solveInPlace(wa1);
temp = wa1.blueNorm();
parl = fp / delta / temp / temp;
}
/* calculate an upper bound, paru, for the zero of the function. */
for (j = 0; j < n; ++j)
wa1[j] = qr.matrixQR().col(j).head(j+1).dot(qtb.head(j+1)) / diag[qr.colsPermutation().indices()(j)];
gnorm = wa1.stableNorm();
paru = gnorm / delta;
if (paru == 0.)
paru = dwarf / (std::min)(delta,Scalar(0.1));
/* if the input par lies outside of the interval (parl,paru), */
/* set par to the closer endpoint. */
par = (std::max)(par,parl);
par = (std::min)(par,paru);
if (par == 0.)
par = gnorm / dxnorm;
/* beginning of an iteration. */
Matrix< Scalar, Dynamic, Dynamic > s = qr.matrixQR();
while (true) {
++iter;
/* evaluate the function at the current value of par. */
if (par == 0.)
par = (std::max)(dwarf,Scalar(.001) * paru); /* Computing MAX */
wa1 = sqrt(par)* diag;
Matrix< Scalar, Dynamic, 1 > sdiag(n);
qrsolv<Scalar>(s, qr.colsPermutation().indices(), wa1, qtb, x, sdiag);
wa2 = diag.cwiseProduct(x);
dxnorm = wa2.blueNorm();
temp = fp;
fp = dxnorm - delta;
/* if the function is small enough, accept the current value */
/* of par. also test for the exceptional cases where parl */
/* is zero or the number of iterations has reached 10. */
if (abs(fp) <= Scalar(0.1) * delta || (parl == 0. && fp <= temp && temp < 0.) || iter == 10)
break;
/* compute the newton correction. */
wa1 = qr.colsPermutation().inverse() * diag.cwiseProduct(wa2/dxnorm);
// we could almost use this here, but the diagonal is outside qr, in sdiag[]
// qr.matrixQR().topLeftCorner(n, n).transpose().template triangularView<Lower>().solveInPlace(wa1);
for (j = 0; j < n; ++j) {
wa1[j] /= sdiag[j];
temp = wa1[j];
for (Index i = j+1; i < n; ++i)
wa1[i] -= s(i,j) * temp;
}
temp = wa1.blueNorm();
parc = fp / delta / temp / temp;
/* depending on the sign of the function, update parl or paru. */
if (fp > 0.)
parl = (std::max)(parl,par);
if (fp < 0.)
paru = (std::min)(paru,par);
/* compute an improved estimate for par. */
par = (std::max)(parl,par+parc);
}
if (iter == 0)
par = 0.;
return;
}
} // end namespace internal
} // end namespace Eigen