openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

316 lines
7.5 KiB

#include <sys/file.h>
#include <sys/ioctl.h>
#include <linux/spi/spidev.h>
#include <cassert>
#include <cmath>
#include <cstring>
#include "common/util.h"
#include "common/timing.h"
#include "common/swaglog.h"
#include "panda/board/comms_definitions.h"
#include "selfdrive/boardd/panda_comms.h"
#define SPI_SYNC 0x5AU
#define SPI_HACK 0x79U
#define SPI_DACK 0x85U
#define SPI_NACK 0x1FU
#define SPI_CHECKSUM_START 0xABU
struct __attribute__((packed)) spi_header {
uint8_t sync;
uint8_t endpoint;
uint16_t tx_len;
uint16_t max_rx_len;
};
const int SPI_MAX_RETRIES = 5;
const int SPI_ACK_TIMEOUT = 50; // milliseconds
class LockEx {
public:
LockEx(int fd, std::recursive_mutex &m) : fd(fd), m(m) {
m.lock();
flock(fd, LOCK_EX);
};
~LockEx() {
m.unlock();
flock(fd, LOCK_UN);
}
private:
int fd;
std::recursive_mutex &m;
};
PandaSpiHandle::PandaSpiHandle(std::string serial) : PandaCommsHandle(serial) {
LOGD("opening SPI panda: %s", serial.c_str());
int err;
uint32_t spi_mode = SPI_MODE_0;
uint32_t spi_speed = 30000000;
uint8_t spi_bits_per_word = 8;
spi_fd = open(serial.c_str(), O_RDWR);
if (spi_fd < 0) {
LOGE("failed opening SPI device %d", err);
goto fail;
}
// SPI settings
err = util::safe_ioctl(spi_fd, SPI_IOC_WR_MODE, &spi_mode);
if (err < 0) {
LOGE("failed setting SPI mode %d", err);
goto fail;
}
err = util::safe_ioctl(spi_fd, SPI_IOC_WR_MAX_SPEED_HZ, &spi_speed);
if (err < 0) {
LOGE("failed setting SPI speed");
goto fail;
}
err = util::safe_ioctl(spi_fd, SPI_IOC_WR_BITS_PER_WORD, &spi_bits_per_word);
if (err < 0) {
LOGE("failed setting SPI bits per word");
goto fail;
}
return;
fail:
cleanup();
throw std::runtime_error("Error connecting to panda");
}
PandaSpiHandle::~PandaSpiHandle() {
std::lock_guard lk(hw_lock);
cleanup();
}
void PandaSpiHandle::cleanup() {
if (spi_fd != -1) {
close(spi_fd);
spi_fd = -1;
}
}
int PandaSpiHandle::control_write(uint8_t request, uint16_t param1, uint16_t param2, unsigned int timeout) {
LockEx lock(spi_fd, hw_lock);
ControlPacket_t packet = {
.request = request,
.param1 = param1,
.param2 = param2,
.length = 0
};
return spi_transfer_retry(0, (uint8_t *) &packet, sizeof(packet), NULL, 0);
}
int PandaSpiHandle::control_read(uint8_t request, uint16_t param1, uint16_t param2, unsigned char *data, uint16_t length, unsigned int timeout) {
LockEx lock(spi_fd, hw_lock);
ControlPacket_t packet = {
.request = request,
.param1 = param1,
.param2 = param2,
.length = length
};
return spi_transfer_retry(0, (uint8_t *) &packet, sizeof(packet), data, length);
}
int PandaSpiHandle::bulk_write(unsigned char endpoint, unsigned char* data, int length, unsigned int timeout) {
LockEx lock(spi_fd, hw_lock);
return bulk_transfer(endpoint, data, length, NULL, 0);
}
int PandaSpiHandle::bulk_read(unsigned char endpoint, unsigned char* data, int length, unsigned int timeout) {
LockEx lock(spi_fd, hw_lock);
return bulk_transfer(endpoint, NULL, 0, data, length);
}
int PandaSpiHandle::bulk_transfer(uint8_t endpoint, uint8_t *tx_data, uint16_t tx_len, uint8_t *rx_data, uint16_t rx_len) {
const int xfer_size = 0x40 * 15;
int ret = 0;
uint16_t length = (tx_data != NULL) ? tx_len : rx_len;
for (int i = 0; i < (int)std::ceil((float)length / xfer_size); i++) {
int d;
if (tx_data != NULL) {
int len = std::min(xfer_size, tx_len - (xfer_size * i));
d = spi_transfer_retry(endpoint, tx_data + (xfer_size * i), len, NULL, 0);
} else {
uint16_t to_read = std::min(xfer_size, rx_len - ret);
d = spi_transfer_retry(endpoint, NULL, 0, rx_data + (xfer_size * i), to_read);
}
if (d < 0) {
LOGE("SPI: bulk transfer failed with %d", d);
comms_healthy = false;
return -1;
}
ret += d;
if ((rx_data != NULL) && d < xfer_size) {
break;
}
}
return ret;
}
std::vector<std::string> PandaSpiHandle::list() {
// TODO: list all pandas available over SPI
return {};
}
void add_checksum(uint8_t *data, int data_len) {
data[data_len] = SPI_CHECKSUM_START;
for (int i=0; i < data_len; i++) {
data[data_len] ^= data[i];
}
}
bool check_checksum(uint8_t *data, int data_len) {
uint8_t checksum = SPI_CHECKSUM_START;
for (uint16_t i = 0U; i < data_len; i++) {
checksum ^= data[i];
}
return checksum == 0U;
}
int PandaSpiHandle::spi_transfer_retry(uint8_t endpoint, uint8_t *tx_data, uint16_t tx_len, uint8_t *rx_data, uint16_t max_rx_len) {
int ret;
int count = SPI_MAX_RETRIES;
do {
// TODO: handle error
ret = spi_transfer(endpoint, tx_data, tx_len, rx_data, max_rx_len);
count--;
} while (ret < 0 && connected && count > 0);
return ret;
}
int PandaSpiHandle::wait_for_ack(spi_ioc_transfer &transfer, uint8_t ack) {
double start_millis = millis_since_boot();
while (true) {
int ret = util::safe_ioctl(spi_fd, SPI_IOC_MESSAGE(1), &transfer);
if (ret < 0) {
LOGE("SPI: failed to send ACK request");
return ret;
}
if (rx_buf[0] == ack) {
break;
} else if (rx_buf[0] == SPI_NACK) {
LOGW("SPI: got NACK");
return -1;
}
// handle timeout
if (millis_since_boot() - start_millis > SPI_ACK_TIMEOUT) {
LOGE("SPI: timed out waiting for ACK");
return -1;
}
}
return 0;
}
int PandaSpiHandle::spi_transfer(uint8_t endpoint, uint8_t *tx_data, uint16_t tx_len, uint8_t *rx_data, uint16_t max_rx_len) {
int ret;
uint16_t rx_data_len;
// needs to be less, since we need to have space for the checksum
assert(tx_len < SPI_BUF_SIZE);
assert(max_rx_len < SPI_BUF_SIZE);
spi_header header = {
.sync = SPI_SYNC,
.endpoint = endpoint,
.tx_len = tx_len,
.max_rx_len = max_rx_len
};
spi_ioc_transfer transfer = {
.tx_buf = (uint64_t)tx_buf,
.rx_buf = (uint64_t)rx_buf
};
// Send header
memcpy(tx_buf, &header, sizeof(header));
add_checksum(tx_buf, sizeof(header));
transfer.len = sizeof(header) + 1;
ret = util::safe_ioctl(spi_fd, SPI_IOC_MESSAGE(1), &transfer);
if (ret < 0) {
LOGE("SPI: failed to send header");
goto transfer_fail;
}
// Wait for (N)ACK
tx_buf[0] = 0x12;
transfer.len = 1;
ret = wait_for_ack(transfer, SPI_HACK);
if (ret < 0) {
goto transfer_fail;
}
// Send data
if (tx_data != NULL) {
memcpy(tx_buf, tx_data, tx_len);
}
add_checksum(tx_buf, tx_len);
transfer.len = tx_len + 1;
ret = util::safe_ioctl(spi_fd, SPI_IOC_MESSAGE(1), &transfer);
if (ret < 0) {
LOGE("SPI: failed to send data");
goto transfer_fail;
}
// Wait for (N)ACK
tx_buf[0] = 0xab;
transfer.len = 1;
ret = wait_for_ack(transfer, SPI_DACK);
if (ret < 0) {
goto transfer_fail;
}
// Read data len
transfer.len = 2;
transfer.rx_buf = (uint64_t)(rx_buf + 1);
ret = util::safe_ioctl(spi_fd, SPI_IOC_MESSAGE(1), &transfer);
if (ret < 0) {
LOGE("SPI: failed to read rx data len");
goto transfer_fail;
}
rx_data_len = *(uint16_t *)(rx_buf+1);
assert(rx_data_len < SPI_BUF_SIZE);
// Read data
transfer.len = rx_data_len + 1;
transfer.rx_buf = (uint64_t)(rx_buf + 2 + 1);
ret = util::safe_ioctl(spi_fd, SPI_IOC_MESSAGE(1), &transfer);
if (ret < 0) {
LOGE("SPI: failed to read rx data");
goto transfer_fail;
}
if (!check_checksum(rx_buf, rx_data_len + 4)) {
LOGE("SPI: bad checksum");
goto transfer_fail;
}
if (rx_data != NULL) {
memcpy(rx_data, rx_buf + 3, rx_data_len);
}
return rx_data_len;
transfer_fail:
return ret;
}