openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

167 lines
6.4 KiB

#!/usr/bin/env python3
import os, sys, io, pathlib
sys.path.insert(0, str(pathlib.Path(__file__).parents[1]))
if "FLOAT16" not in os.environ: os.environ["FLOAT16"] = "1"
if "IMAGE" not in os.environ: os.environ["IMAGE"] = "2"
if "NOLOCALS" not in os.environ: os.environ["NOLOCALS"] = "1"
if "OPT" not in os.environ: os.environ["OPT"] = "99"
os.environ["PREREALIZE"] = "0"
OPENPILOT_MODEL = "https://github.com/commaai/openpilot/raw/v0.9.4/selfdrive/modeld/models/supercombo.onnx"
import onnx
from typing import Tuple, List
from extra.utils import fetch
from extra.onnx import get_run_onnx
from tinygrad.graph import print_tree, log_schedule_item
from tinygrad.tensor import Tensor
from tinygrad.helpers import dtypes, partition, GlobalCounters, Context, DEBUG, getenv, ImageDType, GRAPH
from tinygrad.realize import run_schedule
from tinygrad.ops import LoadOps, Device, ScheduleItem
from tinygrad.features.image import fix_schedule_for_images
Device.DEFAULT = "GPU"
def get_schedule(onnx_data) -> Tuple[List[ScheduleItem], List[ScheduleItem]]:
Tensor.no_grad = True
Tensor.training = False
# load the model
onnx_model = onnx.load(io.BytesIO(onnx_data))
run_onnx = get_run_onnx(onnx_model)
input_shapes = {inp.name:tuple(x.dim_value for x in inp.type.tensor_type.shape.dim) for inp in onnx_model.graph.input}
# run the model
inputs = {k:Tensor.empty(*shp) for k,shp in input_shapes.items()}
ret: Tensor = next(iter(run_onnx(inputs).values())).cast(dtypes.float32).contiguous()
schedule = ret.lazydata.schedule()
# filter schedule that don't depend on the inputs
input_lb = [x.lazydata.base for x in inputs.values()]
depends = set(input_lb)
for si in schedule:
if any(b in depends for b in si.inputs):
depends.add(si.out)
# run all kernels that don't depend on the inputs
# NOTE: there's two extra kernels due to fusions that now happen since the weights aren't realized
schedule, schedule_independent = partition(schedule, lambda si: si.out in depends)
print(f"{len(schedule)} schedule items depend on the input, {len(schedule_independent)} don't")
# confirm no loadops in the (non independent) schedule except for the ones that load the input buffers
assert all(si.ast.op not in LoadOps or si.out in input_lb for si in schedule), "has loadops, can't compile to Thneed"
return schedule, schedule_independent, inputs
def schedule_to_thneed(schedule, output_fn):
from extra.thneed import Thneed
# transform to CL.CACHE
used_ops = 0
cl_cache = []
for si in schedule:
prg = Device["GPU"].method_cache[si.ast]
args = (si.out,) + si.inputs
# pass these to thneed
setattr(prg.clprg, 'op_estimate', prg.op_estimate)
setattr(prg.clprg, 'prg', prg.prg)
global_size = prg.global_size + [1]*(3-len(prg.global_size))
local_size = prg.local_size + [1]*(3-len(prg.local_size))
cl_cache.append((prg.clprg, [[int(g*l) for g,l in zip(global_size, local_size)], local_size, *[x.realized._buf for x in args]]))
used_ops += prg.op_estimate
from extra.thneed import Thneed
input_rawbuffers = {k:inputs[k].lazydata.realized for k in inputs.keys()}
t = Thneed(cl_cache, {k:v._buf for k,v in input_rawbuffers.items()})
# save thneed (before run)
t.save(output_fn)
print(f"buffers to save: {len(t.buffers_to_save)}, inputs: {list(t.inputs.keys())}, outputs: {t.outputs}")
runtime = t.run()
print(f"network using {used_ops/1e9:.2f} GOPS with runtime {runtime*1e3:.2f} ms that's {used_ops/runtime*1e-9:.2f} GFLOPS")
def thneed_test_onnx(onnx_data, output_fn):
import onnx
import pyopencl as cl
from tinygrad.runtime.ops_gpu import CL
import numpy as np
from extra.thneed import Thneed
onnx_model = onnx.load(io.BytesIO(onnx_data))
input_shapes = {inp.name:tuple(x.dim_value for x in inp.type.tensor_type.shape.dim) for inp in onnx_model.graph.input}
inputs = {k:Tensor.randn(*shp, requires_grad=False)*8 for k,shp in input_shapes.items()}
new_np_inputs = {k:v.realize().numpy() for k,v in inputs.items()}
if getenv("ORT"):
# test with onnxruntime
import onnxruntime as ort
onnx_session = ort.InferenceSession(onnx_data)
onnx_output = onnx_session.run([onnx_model.graph.output[0].name], {k:v.astype(np.float16) for k,v in new_np_inputs.items()})
new_torch_out = onnx_output[0]
else:
# test with torch
from test.models.test_onnx import run_onnx_torch
new_torch_out = run_onnx_torch(onnx_model, new_np_inputs).numpy()
if output_fn is None:
# non thneed
run_onnx = get_run_onnx(onnx_model)
new_tinygrad_out = next(iter(run_onnx(inputs).values())).cast(dtypes.float32).numpy()
np.testing.assert_allclose(new_torch_out, new_tinygrad_out, atol=1e-4, rtol=1e-2)
print("classic self-test passed!")
else:
# load thneed and try that
nt = Thneed()
nt.load(output_fn)
# inputs
for k,v in nt.inputs.items():
cl.enqueue_copy(CL.cl_queue[0], v, new_np_inputs[k], is_blocking=True)
nt.run()
new_thneed_out = np.empty((nt.outputs[0].size//4,), dtype=np.float32).reshape(new_torch_out.shape)
cl.enqueue_copy(CL.cl_queue[0], new_thneed_out, nt.outputs[0], is_blocking=True)
# compare torch to thneed
np.testing.assert_allclose(new_torch_out, new_thneed_out, atol=1e-4, rtol=1e-2)
print("thneed self-test passed!")
if __name__ == "__main__":
onnx_data = fetch(sys.argv[1] if len(sys.argv) > 1 else OPENPILOT_MODEL)
# quick test for ONNX issues
#thneed_test_onnx(onnx_data, None)
#exit(0)
schedule, schedule_independent, inputs = get_schedule(onnx_data)
schedule, schedule_input = partition(schedule, lambda x: x.ast.op not in LoadOps)
print(f"{len(schedule_input)} inputs")
run_schedule(schedule_independent, disable_logging=True)
run_schedule(schedule_input)
with Context(DEBUG=2, BEAM=getenv("LATEBEAM")):
schedule = fix_schedule_for_images(schedule)
image_count = sum(isinstance(si.out.dtype, ImageDType) for si in schedule)
print(f"**** running real kernels {image_count}/{len(schedule)} images ****")
if GRAPH:
for si in schedule_input: log_schedule_item(si)
for si in schedule: log_schedule_item(si)
GlobalCounters.reset()
run_schedule(schedule[:])
output_fn = sys.argv[2] if len(sys.argv) >= 3 else "/tmp/output.thneed"
schedule_to_thneed(schedule, output_fn)
FLOAT16 = getenv("FLOAT16", 0)
if FLOAT16 == 0:
try:
thneed_test_onnx(onnx_data, output_fn)
except ModuleNotFoundError as e:
print(f"TEST NOT HAPPENING {e}")