|
|
|
@ -1,7 +1,5 @@ |
|
|
|
|
#!/usr/bin/env python3 |
|
|
|
|
|
|
|
|
|
import os |
|
|
|
|
|
|
|
|
|
import numpy as np |
|
|
|
|
import sympy as sp |
|
|
|
|
|
|
|
|
@ -11,7 +9,6 @@ from selfdrive.locationd.kalman.helpers.lst_sq_computer import LstSqComputer |
|
|
|
|
from selfdrive.locationd.kalman.helpers.sympy_helpers import (euler_rotate, |
|
|
|
|
quat_matrix_r, |
|
|
|
|
quat_rotate) |
|
|
|
|
#from laika.constants import EARTH_GM |
|
|
|
|
EARTH_GM = 3.986005e14 # m^3/s^2 (gravitational constant * mass of earth) |
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -36,9 +33,9 @@ def parse_pr(m): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class States(): |
|
|
|
|
ECEF_POS = slice(0,3) # x, y and z in ECEF in meters |
|
|
|
|
ECEF_ORIENTATION = slice(3,7) # quat for pose of phone in ecef |
|
|
|
|
ECEF_VELOCITY = slice(7,10) # ecef velocity in m/s |
|
|
|
|
ECEF_POS = slice(0, 3) # x, y and z in ECEF in meters |
|
|
|
|
ECEF_ORIENTATION = slice(3, 7) # quat for pose of phone in ecef |
|
|
|
|
ECEF_VELOCITY = slice(7, 10) # ecef velocity in m/s |
|
|
|
|
ANGULAR_VELOCITY = slice(10, 13) # roll, pitch and yaw rates in device frame in radians/s |
|
|
|
|
CLOCK_BIAS = slice(13, 14) # clock bias in light-meters, |
|
|
|
|
CLOCK_DRIFT = slice(14, 15) # clock drift in light-meters/s, |
|
|
|
@ -46,8 +43,8 @@ class States(): |
|
|
|
|
ODO_SCALE = slice(18, 19) # odometer scale |
|
|
|
|
ACCELERATION = slice(19, 22) # Acceleration in device frame in m/s**2 |
|
|
|
|
FOCAL_SCALE = slice(22, 23) # focal length scale |
|
|
|
|
IMU_OFFSET = slice(23,26) # imu offset angles in radians |
|
|
|
|
GLONASS_BIAS = slice(26,27) # GLONASS bias in m expressed as bias + freq_num*freq_slope |
|
|
|
|
IMU_OFFSET = slice(23, 26) # imu offset angles in radians |
|
|
|
|
GLONASS_BIAS = slice(26, 27) # GLONASS bias in m expressed as bias + freq_num*freq_slope |
|
|
|
|
GLONASS_FREQ_SLOPE = slice(27, 28) # GLONASS bias in m expressed as bias + freq_num*freq_slope |
|
|
|
|
CLOCK_ACCELERATION = slice(28, 29) # clock acceleration in light-meters/s**2, |
|
|
|
|
|
|
|
|
@ -87,15 +84,15 @@ class LocKalman(): |
|
|
|
|
0.0**2, 0.0**2, 0.0**2, |
|
|
|
|
0.1**2, 0.1**2, 0.1**2, |
|
|
|
|
(.1)**2, (0.0)**2, |
|
|
|
|
(0.005/100)**2, (0.005/100)**2, (0.005/100)**2, |
|
|
|
|
(0.02/100)**2, |
|
|
|
|
(0.005 / 100)**2, (0.005 / 100)**2, (0.005 / 100)**2, |
|
|
|
|
(0.02 / 100)**2, |
|
|
|
|
3**2, 3**2, 3**2, |
|
|
|
|
0.001**2, |
|
|
|
|
(0.05/60)**2, (0.05/60)**2, (0.05/60)**2, |
|
|
|
|
(0.05 / 60)**2, (0.05 / 60)**2, (0.05 / 60)**2, |
|
|
|
|
(.1)**2, (.01)**2, |
|
|
|
|
0.005**2]) |
|
|
|
|
|
|
|
|
|
maha_test_kinds = [ObservationKind.ORB_FEATURES] #, ObservationKind.PSEUDORANGE, ObservationKind.PSEUDORANGE_RATE] |
|
|
|
|
maha_test_kinds = [ObservationKind.ORB_FEATURES] # , ObservationKind.PSEUDORANGE, ObservationKind.PSEUDORANGE_RATE] |
|
|
|
|
dim_augment = 7 |
|
|
|
|
dim_augment_err = 6 |
|
|
|
|
|
|
|
|
@ -116,20 +113,20 @@ class LocKalman(): |
|
|
|
|
# state variables |
|
|
|
|
state_sym = sp.MatrixSymbol('state', dim_state, 1) |
|
|
|
|
state = sp.Matrix(state_sym) |
|
|
|
|
x,y,z = state[0:3,:] |
|
|
|
|
q = state[3:7,:] |
|
|
|
|
v = state[7:10,:] |
|
|
|
|
x, y, z = state[0:3, :] |
|
|
|
|
q = state[3:7, :] |
|
|
|
|
v = state[7:10, :] |
|
|
|
|
vx, vy, vz = v |
|
|
|
|
omega = state[10:13,:] |
|
|
|
|
omega = state[10:13, :] |
|
|
|
|
vroll, vpitch, vyaw = omega |
|
|
|
|
cb, cd = state[13:15,:] |
|
|
|
|
roll_bias, pitch_bias, yaw_bias = state[15:18,:] |
|
|
|
|
odo_scale = state[18,:] |
|
|
|
|
acceleration = state[19:22,:] |
|
|
|
|
focal_scale = state[22,:] |
|
|
|
|
imu_angles= state[23:26,:] |
|
|
|
|
glonass_bias, glonass_freq_slope = state[26:28,:] |
|
|
|
|
ca = state[28,0] |
|
|
|
|
cb, cd = state[13:15, :] |
|
|
|
|
roll_bias, pitch_bias, yaw_bias = state[15:18, :] |
|
|
|
|
odo_scale = state[18, :] |
|
|
|
|
acceleration = state[19:22, :] |
|
|
|
|
focal_scale = state[22, :] |
|
|
|
|
imu_angles = state[23:26, :] |
|
|
|
|
glonass_bias, glonass_freq_slope = state[26:28, :] |
|
|
|
|
ca = state[28, 0] |
|
|
|
|
|
|
|
|
|
dt = sp.Symbol('dt') |
|
|
|
|
|
|
|
|
@ -140,7 +137,7 @@ class LocKalman(): |
|
|
|
|
# A New Quaternion-Based Kalman Filter for |
|
|
|
|
# Real-Time Attitude Estimation Using the Two-Step |
|
|
|
|
# Geometrically-Intuitive Correction Algorithm |
|
|
|
|
A = 0.5*sp.Matrix([[0, -vroll, -vpitch, -vyaw], |
|
|
|
|
A = 0.5 * sp.Matrix([[0, -vroll, -vpitch, -vyaw], |
|
|
|
|
[vroll, 0, vyaw, -vpitch], |
|
|
|
|
[vpitch, -vyaw, 0, vroll], |
|
|
|
|
[vyaw, vpitch, -vroll, 0]]) |
|
|
|
@ -148,80 +145,76 @@ class LocKalman(): |
|
|
|
|
|
|
|
|
|
# Time derivative of the state as a function of state |
|
|
|
|
state_dot = sp.Matrix(np.zeros((dim_state, 1))) |
|
|
|
|
state_dot[:3,:] = v |
|
|
|
|
state_dot[3:7,:] = q_dot |
|
|
|
|
state_dot[7:10,0] = quat_rot * acceleration |
|
|
|
|
state_dot[13,0] = cd |
|
|
|
|
state_dot[14,0] = ca |
|
|
|
|
state_dot[:3, :] = v |
|
|
|
|
state_dot[3:7, :] = q_dot |
|
|
|
|
state_dot[7:10, 0] = quat_rot * acceleration |
|
|
|
|
state_dot[13, 0] = cd |
|
|
|
|
state_dot[14, 0] = ca |
|
|
|
|
|
|
|
|
|
# Basic descretization, 1st order intergrator |
|
|
|
|
# Can be pretty bad if dt is big |
|
|
|
|
f_sym = state + dt*state_dot |
|
|
|
|
f_sym = state + dt * state_dot |
|
|
|
|
|
|
|
|
|
state_err_sym = sp.MatrixSymbol('state_err',dim_state_err,1) |
|
|
|
|
state_err_sym = sp.MatrixSymbol('state_err', dim_state_err, 1) |
|
|
|
|
state_err = sp.Matrix(state_err_sym) |
|
|
|
|
quat_err = state_err[3:6,:] |
|
|
|
|
v_err = state_err[6:9,:] |
|
|
|
|
omega_err = state_err[9:12,:] |
|
|
|
|
cd_err = state_err[13,:] |
|
|
|
|
acceleration_err = state_err[18:21,:] |
|
|
|
|
ca_err = state_err[27,:] |
|
|
|
|
quat_err = state_err[3:6, :] |
|
|
|
|
v_err = state_err[6:9, :] |
|
|
|
|
omega_err = state_err[9:12, :] |
|
|
|
|
cd_err = state_err[13, :] |
|
|
|
|
acceleration_err = state_err[18:21, :] |
|
|
|
|
ca_err = state_err[27, :] |
|
|
|
|
|
|
|
|
|
# Time derivative of the state error as a function of state error and state |
|
|
|
|
quat_err_matrix = euler_rotate(quat_err[0], quat_err[1], quat_err[2]) |
|
|
|
|
q_err_dot = quat_err_matrix * quat_rot * (omega + omega_err) |
|
|
|
|
state_err_dot = sp.Matrix(np.zeros((dim_state_err, 1))) |
|
|
|
|
state_err_dot[:3,:] = v_err |
|
|
|
|
state_err_dot[3:6,:] = q_err_dot |
|
|
|
|
state_err_dot[6:9,:] = quat_err_matrix * quat_rot * (acceleration + acceleration_err) |
|
|
|
|
state_err_dot[12,:] = cd_err |
|
|
|
|
state_err_dot[13,:] = ca_err |
|
|
|
|
f_err_sym = state_err + dt*state_err_dot |
|
|
|
|
state_err_dot[:3, :] = v_err |
|
|
|
|
state_err_dot[3:6, :] = q_err_dot |
|
|
|
|
state_err_dot[6:9, :] = quat_err_matrix * quat_rot * (acceleration + acceleration_err) |
|
|
|
|
state_err_dot[12, :] = cd_err |
|
|
|
|
state_err_dot[13, :] = ca_err |
|
|
|
|
f_err_sym = state_err + dt * state_err_dot |
|
|
|
|
|
|
|
|
|
# convenient indexing |
|
|
|
|
# q idxs are for quats and p idxs are for other |
|
|
|
|
q_idxs = [[3, dim_augment]] + [[dim_main + n*dim_augment + 3, dim_main + (n+1)*dim_augment] for n in range(N)] |
|
|
|
|
q_err_idxs = [[3, dim_augment_err]] + [[dim_main_err + n*dim_augment_err + 3, dim_main_err + (n+1)*dim_augment_err] for n in range(N)] |
|
|
|
|
p_idxs = [[0, 3]] + [[dim_augment, dim_main]] + [[dim_main + n*dim_augment , dim_main + n*dim_augment + 3] for n in range(N)] |
|
|
|
|
p_err_idxs = [[0, 3]] + [[dim_augment_err, dim_main_err]] + [[dim_main_err + n*dim_augment_err, dim_main_err + n*dim_augment_err + 3] for n in range(N)] |
|
|
|
|
q_idxs = [[3, dim_augment]] + [[dim_main + n * dim_augment + 3, dim_main + (n + 1) * dim_augment] for n in range(N)] |
|
|
|
|
q_err_idxs = [[3, dim_augment_err]] + [[dim_main_err + n * dim_augment_err + 3, dim_main_err + (n + 1) * dim_augment_err] for n in range(N)] |
|
|
|
|
p_idxs = [[0, 3]] + [[dim_augment, dim_main]] + [[dim_main + n * dim_augment, dim_main + n * dim_augment + 3] for n in range(N)] |
|
|
|
|
p_err_idxs = [[0, 3]] + [[dim_augment_err, dim_main_err]] + [[dim_main_err + n * dim_augment_err, dim_main_err + n * dim_augment_err + 3] for n in range(N)] |
|
|
|
|
|
|
|
|
|
# Observation matrix modifier |
|
|
|
|
H_mod_sym = sp.Matrix(np.zeros((dim_state, dim_state_err))) |
|
|
|
|
for p_idx, p_err_idx in zip(p_idxs, p_err_idxs): |
|
|
|
|
H_mod_sym[p_idx[0]:p_idx[1],p_err_idx[0]:p_err_idx[1]] = np.eye(p_idx[1]-p_idx[0]) |
|
|
|
|
H_mod_sym[p_idx[0]:p_idx[1], p_err_idx[0]:p_err_idx[1]] = np.eye(p_idx[1] - p_idx[0]) |
|
|
|
|
for q_idx, q_err_idx in zip(q_idxs, q_err_idxs): |
|
|
|
|
H_mod_sym[q_idx[0]:q_idx[1],q_err_idx[0]:q_err_idx[1]] = 0.5*quat_matrix_r(state[q_idx[0]:q_idx[1]])[:,1:] |
|
|
|
|
|
|
|
|
|
H_mod_sym[q_idx[0]:q_idx[1], q_err_idx[0]:q_err_idx[1]] = 0.5 * quat_matrix_r(state[q_idx[0]:q_idx[1]])[:, 1:] |
|
|
|
|
|
|
|
|
|
# these error functions are defined so that say there |
|
|
|
|
# is a nominal x and true x: |
|
|
|
|
# true x = err_function(nominal x, delta x) |
|
|
|
|
# delta x = inv_err_function(nominal x, true x) |
|
|
|
|
nom_x = sp.MatrixSymbol('nom_x',dim_state,1) |
|
|
|
|
true_x = sp.MatrixSymbol('true_x',dim_state,1) |
|
|
|
|
delta_x = sp.MatrixSymbol('delta_x',dim_state_err,1) |
|
|
|
|
nom_x = sp.MatrixSymbol('nom_x', dim_state, 1) |
|
|
|
|
true_x = sp.MatrixSymbol('true_x', dim_state, 1) |
|
|
|
|
delta_x = sp.MatrixSymbol('delta_x', dim_state_err, 1) |
|
|
|
|
|
|
|
|
|
err_function_sym = sp.Matrix(np.zeros((dim_state,1))) |
|
|
|
|
err_function_sym = sp.Matrix(np.zeros((dim_state, 1))) |
|
|
|
|
for q_idx, q_err_idx in zip(q_idxs, q_err_idxs): |
|
|
|
|
delta_quat = sp.Matrix(np.ones((4))) |
|
|
|
|
delta_quat[1:,:] = sp.Matrix(0.5*delta_x[q_err_idx[0]: q_err_idx[1],:]) |
|
|
|
|
err_function_sym[q_idx[0]:q_idx[1],0] = quat_matrix_r(nom_x[q_idx[0]:q_idx[1],0])*delta_quat |
|
|
|
|
delta_quat[1:, :] = sp.Matrix(0.5 * delta_x[q_err_idx[0]: q_err_idx[1], :]) |
|
|
|
|
err_function_sym[q_idx[0]:q_idx[1], 0] = quat_matrix_r(nom_x[q_idx[0]:q_idx[1], 0]) * delta_quat |
|
|
|
|
for p_idx, p_err_idx in zip(p_idxs, p_err_idxs): |
|
|
|
|
err_function_sym[p_idx[0]:p_idx[1],:] = sp.Matrix(nom_x[p_idx[0]:p_idx[1],:] + delta_x[p_err_idx[0]:p_err_idx[1],:]) |
|
|
|
|
err_function_sym[p_idx[0]:p_idx[1], :] = sp.Matrix(nom_x[p_idx[0]:p_idx[1], :] + delta_x[p_err_idx[0]:p_err_idx[1], :]) |
|
|
|
|
|
|
|
|
|
inv_err_function_sym = sp.Matrix(np.zeros((dim_state_err,1))) |
|
|
|
|
inv_err_function_sym = sp.Matrix(np.zeros((dim_state_err, 1))) |
|
|
|
|
for p_idx, p_err_idx in zip(p_idxs, p_err_idxs): |
|
|
|
|
inv_err_function_sym[p_err_idx[0]:p_err_idx[1],0] = sp.Matrix(-nom_x[p_idx[0]:p_idx[1],0] + true_x[p_idx[0]:p_idx[1],0]) |
|
|
|
|
inv_err_function_sym[p_err_idx[0]:p_err_idx[1], 0] = sp.Matrix(-nom_x[p_idx[0]:p_idx[1], 0] + true_x[p_idx[0]:p_idx[1], 0]) |
|
|
|
|
for q_idx, q_err_idx in zip(q_idxs, q_err_idxs): |
|
|
|
|
delta_quat = quat_matrix_r(nom_x[q_idx[0]:q_idx[1],0]).T*true_x[q_idx[0]:q_idx[1],0] |
|
|
|
|
inv_err_function_sym[q_err_idx[0]:q_err_idx[1],0] = sp.Matrix(2*delta_quat[1:]) |
|
|
|
|
delta_quat = quat_matrix_r(nom_x[q_idx[0]:q_idx[1], 0]).T * true_x[q_idx[0]:q_idx[1], 0] |
|
|
|
|
inv_err_function_sym[q_err_idx[0]:q_err_idx[1], 0] = sp.Matrix(2 * delta_quat[1:]) |
|
|
|
|
|
|
|
|
|
eskf_params = [[err_function_sym, nom_x, delta_x], |
|
|
|
|
[inv_err_function_sym, nom_x, true_x], |
|
|
|
|
H_mod_sym, f_err_sym, state_err_sym] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# |
|
|
|
|
# Observation functions |
|
|
|
|
# |
|
|
|
@ -238,52 +231,54 @@ class LocKalman(): |
|
|
|
|
los_x, los_y, los_z = sat_los_sym |
|
|
|
|
orb_x, orb_y, orb_z = orb_epos_sym |
|
|
|
|
|
|
|
|
|
h_pseudorange_sym = sp.Matrix([sp.sqrt( |
|
|
|
|
h_pseudorange_sym = sp.Matrix([ |
|
|
|
|
sp.sqrt( |
|
|
|
|
(x - sat_x)**2 + |
|
|
|
|
(y - sat_y)**2 + |
|
|
|
|
(z - sat_z)**2) + |
|
|
|
|
cb]) |
|
|
|
|
(z - sat_z)**2 |
|
|
|
|
) + cb |
|
|
|
|
]) |
|
|
|
|
|
|
|
|
|
h_pseudorange_glonass_sym = sp.Matrix([sp.sqrt( |
|
|
|
|
h_pseudorange_glonass_sym = sp.Matrix([ |
|
|
|
|
sp.sqrt( |
|
|
|
|
(x - sat_x)**2 + |
|
|
|
|
(y - sat_y)**2 + |
|
|
|
|
(z - sat_z)**2) + |
|
|
|
|
cb + glonass_bias + glonass_freq_slope*glonass_freq]) |
|
|
|
|
(z - sat_z)**2 |
|
|
|
|
) + cb + glonass_bias + glonass_freq_slope * glonass_freq |
|
|
|
|
]) |
|
|
|
|
|
|
|
|
|
los_vector = (sp.Matrix(sat_pos_vel_sym[0:3]) - sp.Matrix([x, y, z])) |
|
|
|
|
los_vector = los_vector / sp.sqrt(los_vector[0]**2 + los_vector[1]**2 + los_vector[2]**2) |
|
|
|
|
h_pseudorange_rate_sym = sp.Matrix([los_vector[0]*(sat_vx - vx) + |
|
|
|
|
los_vector[1]*(sat_vy - vy) + |
|
|
|
|
los_vector[2]*(sat_vz - vz) + |
|
|
|
|
h_pseudorange_rate_sym = sp.Matrix([los_vector[0] * (sat_vx - vx) + |
|
|
|
|
los_vector[1] * (sat_vy - vy) + |
|
|
|
|
los_vector[2] * (sat_vz - vz) + |
|
|
|
|
cd]) |
|
|
|
|
|
|
|
|
|
imu_rot = euler_rotate(*imu_angles) |
|
|
|
|
h_gyro_sym = imu_rot*sp.Matrix([vroll + roll_bias, |
|
|
|
|
h_gyro_sym = imu_rot * sp.Matrix([vroll + roll_bias, |
|
|
|
|
vpitch + pitch_bias, |
|
|
|
|
vyaw + yaw_bias]) |
|
|
|
|
|
|
|
|
|
pos = sp.Matrix([x, y, z]) |
|
|
|
|
gravity = quat_rot.T * ((EARTH_GM/((x**2 + y**2 + z**2)**(3.0/2.0)))*pos) |
|
|
|
|
h_acc_sym = imu_rot*(gravity + acceleration) |
|
|
|
|
h_phone_rot_sym = sp.Matrix([vroll, |
|
|
|
|
vpitch, |
|
|
|
|
vyaw]) |
|
|
|
|
speed = vx**2 + vy**2 + vz**2 |
|
|
|
|
h_speed_sym = sp.Matrix([sp.sqrt(speed)*odo_scale]) |
|
|
|
|
gravity = quat_rot.T * ((EARTH_GM / ((x**2 + y**2 + z**2)**(3.0 / 2.0))) * pos) |
|
|
|
|
h_acc_sym = imu_rot * (gravity + acceleration) |
|
|
|
|
h_phone_rot_sym = sp.Matrix([vroll, vpitch, vyaw]) |
|
|
|
|
|
|
|
|
|
speed = sp.sqrt(vx**2 + vy**2 + vz**2) |
|
|
|
|
h_speed_sym = sp.Matrix([speed * odo_scale]) |
|
|
|
|
|
|
|
|
|
# orb stuff |
|
|
|
|
orb_pos_sym = sp.Matrix([orb_x - x, orb_y - y, orb_z - z]) |
|
|
|
|
orb_pos_rot_sym = quat_rot.T * orb_pos_sym |
|
|
|
|
s = orb_pos_rot_sym[0] |
|
|
|
|
h_orb_point_sym = sp.Matrix([(1/s)*(orb_pos_rot_sym[1]), |
|
|
|
|
(1/s)*(orb_pos_rot_sym[2])]) |
|
|
|
|
h_orb_point_sym = sp.Matrix([(1 / s) * (orb_pos_rot_sym[1]), |
|
|
|
|
(1 / s) * (orb_pos_rot_sym[2])]) |
|
|
|
|
|
|
|
|
|
h_pos_sym = sp.Matrix([x, y, z]) |
|
|
|
|
h_imu_frame_sym = sp.Matrix(imu_angles) |
|
|
|
|
|
|
|
|
|
h_relative_motion = sp.Matrix(quat_rot.T * v) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
obs_eqs = [[h_speed_sym, ObservationKind.ODOMETRIC_SPEED, None], |
|
|
|
|
[h_gyro_sym, ObservationKind.PHONE_GYRO, None], |
|
|
|
|
[h_phone_rot_sym, ObservationKind.NO_ROT, None], |
|
|
|
@ -300,30 +295,31 @@ class LocKalman(): |
|
|
|
|
|
|
|
|
|
# MSCKF configuration |
|
|
|
|
if N > 0: |
|
|
|
|
focal_scale =1 |
|
|
|
|
focal_scale = 1 |
|
|
|
|
# Add observation functions for orb feature tracks |
|
|
|
|
track_epos_sym = sp.MatrixSymbol('track_epos_sym', 3, 1) |
|
|
|
|
track_x, track_y, track_z = track_epos_sym |
|
|
|
|
h_track_sym = sp.Matrix(np.zeros(((1 + N)*2, 1))) |
|
|
|
|
h_track_sym = sp.Matrix(np.zeros(((1 + N) * 2, 1))) |
|
|
|
|
track_pos_sym = sp.Matrix([track_x - x, track_y - y, track_z - z]) |
|
|
|
|
track_pos_rot_sym = quat_rot.T * track_pos_sym |
|
|
|
|
h_track_sym[-2:,:] = sp.Matrix([focal_scale*(track_pos_rot_sym[1]/track_pos_rot_sym[0]), |
|
|
|
|
focal_scale*(track_pos_rot_sym[2]/track_pos_rot_sym[0])]) |
|
|
|
|
h_track_sym[-2:, :] = sp.Matrix([focal_scale * (track_pos_rot_sym[1] / track_pos_rot_sym[0]), |
|
|
|
|
focal_scale * (track_pos_rot_sym[2] / track_pos_rot_sym[0])]) |
|
|
|
|
|
|
|
|
|
h_msckf_test_sym = sp.Matrix(np.zeros(((1 + N)*3, 1))) |
|
|
|
|
h_msckf_test_sym[-3:,:] = sp.Matrix([track_x - x,track_y - y , track_z - z]) |
|
|
|
|
h_msckf_test_sym = sp.Matrix(np.zeros(((1 + N) * 3, 1))) |
|
|
|
|
h_msckf_test_sym[-3:, :] = sp.Matrix([track_x - x, track_y - y, track_z - z]) |
|
|
|
|
|
|
|
|
|
for n in range(N): |
|
|
|
|
idx = dim_main + n*dim_augment |
|
|
|
|
err_idx = dim_main_err + n*dim_augment_err |
|
|
|
|
x, y, z = state[idx:idx+3] |
|
|
|
|
q = state[idx+3:idx+7] |
|
|
|
|
idx = dim_main + n * dim_augment |
|
|
|
|
err_idx = dim_main_err + n * dim_augment_err # FIXME: Why is this not used? |
|
|
|
|
x, y, z = state[idx:idx + 3] |
|
|
|
|
q = state[idx + 3:idx + 7] |
|
|
|
|
quat_rot = quat_rotate(*q) |
|
|
|
|
track_pos_sym = sp.Matrix([track_x - x, track_y - y, track_z - z]) |
|
|
|
|
track_pos_rot_sym = quat_rot.T * track_pos_sym |
|
|
|
|
h_track_sym[n*2:n*2+2,:] = sp.Matrix([focal_scale*(track_pos_rot_sym[1]/track_pos_rot_sym[0]), |
|
|
|
|
focal_scale*(track_pos_rot_sym[2]/track_pos_rot_sym[0])]) |
|
|
|
|
h_msckf_test_sym[n*3:n*3+3,:] = sp.Matrix([track_x - x, track_y - y, track_z - z]) |
|
|
|
|
h_track_sym[n * 2:n * 2 + 2, :] = sp.Matrix([focal_scale * (track_pos_rot_sym[1] / track_pos_rot_sym[0]), |
|
|
|
|
focal_scale * (track_pos_rot_sym[2] / track_pos_rot_sym[0])]) |
|
|
|
|
h_msckf_test_sym[n * 3:n * 3 + 3, :] = sp.Matrix([track_x - x, track_y - y, track_z - z]) |
|
|
|
|
|
|
|
|
|
obs_eqs.append([h_msckf_test_sym, ObservationKind.MSCKF_TEST, track_epos_sym]) |
|
|
|
|
obs_eqs.append([h_track_sym, ObservationKind.ORB_FEATURES, track_epos_sym]) |
|
|
|
|
obs_eqs.append([h_track_sym, ObservationKind.FEATURE_TRACK_TEST, track_epos_sym]) |
|
|
|
@ -337,7 +333,7 @@ class LocKalman(): |
|
|
|
|
|
|
|
|
|
self.obs_noise = {ObservationKind.ODOMETRIC_SPEED: np.atleast_2d(0.2**2), |
|
|
|
|
ObservationKind.PHONE_GYRO: np.diag([0.025**2, 0.025**2, 0.025**2]), |
|
|
|
|
ObservationKind.PHONE_ACCEL: np.diag([.5**2, .5**2, .5*2]), |
|
|
|
|
ObservationKind.PHONE_ACCEL: np.diag([.5**2, .5**2, .5**2]), |
|
|
|
|
ObservationKind.CAMERA_ODO_ROTATION: np.diag([0.05**2, 0.05**2, 0.05**2]), |
|
|
|
|
ObservationKind.IMU_FRAME: np.diag([0.05**2, 0.05**2, 0.05**2]), |
|
|
|
|
ObservationKind.NO_ROT: np.diag([0.00025**2, 0.00025**2, 0.00025**2]), |
|
|
|
@ -347,8 +343,8 @@ class LocKalman(): |
|
|
|
|
self.N = N |
|
|
|
|
self.dim_main = LocKalman.x_initial.shape[0] |
|
|
|
|
self.dim_main_err = LocKalman.P_initial.shape[0] |
|
|
|
|
self.dim_state = self.dim_main + self.dim_augment*self.N |
|
|
|
|
self.dim_state_err = self.dim_main_err + self.dim_augment_err*self.N |
|
|
|
|
self.dim_state = self.dim_main + self.dim_augment * self.N |
|
|
|
|
self.dim_state_err = self.dim_main_err + self.dim_augment_err * self.N |
|
|
|
|
|
|
|
|
|
if self.N > 0: |
|
|
|
|
x_initial, P_initial, Q = self.pad_augmented(self.x_initial, self.P_initial, self.Q) |
|
|
|
@ -379,15 +375,15 @@ class LocKalman(): |
|
|
|
|
|
|
|
|
|
def pad_augmented(self, x, P, Q=None): |
|
|
|
|
if x.shape[0] == self.dim_main and self.N > 0: |
|
|
|
|
x = np.pad(x, (0, self.N*self.dim_augment), mode='constant') |
|
|
|
|
x[self.dim_main+3::7] = 1 |
|
|
|
|
x = np.pad(x, (0, self.N * self.dim_augment), mode='constant') |
|
|
|
|
x[self.dim_main + 3::7] = 1 |
|
|
|
|
if P.shape[0] == self.dim_main_err and self.N > 0: |
|
|
|
|
P = np.pad(P, [(0, self.N*self.dim_augment_err), (0, self.N*self.dim_augment_err)], mode='constant') |
|
|
|
|
P[self.dim_main_err:, self.dim_main_err:] = 10e20*np.eye(self.dim_augment_err *self.N) |
|
|
|
|
P = np.pad(P, [(0, self.N * self.dim_augment_err), (0, self.N * self.dim_augment_err)], mode='constant') |
|
|
|
|
P[self.dim_main_err:, self.dim_main_err:] = 10e20 * np.eye(self.dim_augment_err * self.N) |
|
|
|
|
if Q is None: |
|
|
|
|
return x, P |
|
|
|
|
else: |
|
|
|
|
Q = np.pad(Q, [(0, self.N*self.dim_augment_err), (0, self.N*self.dim_augment_err)], mode='constant') |
|
|
|
|
Q = np.pad(Q, [(0, self.N * self.dim_augment_err), (0, self.N * self.dim_augment_err)], mode='constant') |
|
|
|
|
return x, P, Q |
|
|
|
|
|
|
|
|
|
def init_state(self, state, covs_diag=None, covs=None, filter_time=None): |
|
|
|
@ -424,15 +420,15 @@ class LocKalman(): |
|
|
|
|
else: |
|
|
|
|
r = self.filter.predict_and_update_batch(t, kind, data, self.get_R(kind, len(data))) |
|
|
|
|
# Normalize quats |
|
|
|
|
quat_norm = np.linalg.norm(self.filter.x[3:7,0]) |
|
|
|
|
quat_norm = np.linalg.norm(self.filter.x[3:7, 0]) |
|
|
|
|
# Should not continue if the quats behave this weirdly |
|
|
|
|
if not 0.1 < quat_norm < 10: |
|
|
|
|
raise RuntimeError("Sir! The filter's gone all wobbly!") |
|
|
|
|
self.filter.x[3:7,0] = self.filter.x[3:7,0]/quat_norm |
|
|
|
|
self.filter.x[3:7, 0] = self.filter.x[3:7, 0] / quat_norm |
|
|
|
|
for i in range(self.N): |
|
|
|
|
d1 = self.dim_main |
|
|
|
|
d3 = self.dim_augment |
|
|
|
|
self.filter.x[d1+d3*i+3:d1+d3*i+7] /= np.linalg.norm(self.filter.x[d1+i*d3 + 3:d1+i*d3 + 7,0]) |
|
|
|
|
self.filter.x[d1 + d3 * i + 3:d1 + d3 * i + 7] /= np.linalg.norm(self.filter.x[d1 + i * d3 + 3:d1 + i * d3 + 7, 0]) |
|
|
|
|
return r |
|
|
|
|
|
|
|
|
|
def get_R(self, kind, n): |
|
|
|
@ -440,7 +436,7 @@ class LocKalman(): |
|
|
|
|
dim = obs_noise.shape[0] |
|
|
|
|
R = np.zeros((n, dim, dim)) |
|
|
|
|
for i in range(n): |
|
|
|
|
R[i,:,:] = obs_noise |
|
|
|
|
R[i, :, :] = obs_noise |
|
|
|
|
return R |
|
|
|
|
|
|
|
|
|
def predict_and_update_pseudorange(self, meas, t, kind): |
|
|
|
@ -449,12 +445,11 @@ class LocKalman(): |
|
|
|
|
z = np.zeros((len(meas), 1)) |
|
|
|
|
for i, m in enumerate(meas): |
|
|
|
|
z_i, R_i, sat_pos_freq_i = parse_pr(m) |
|
|
|
|
sat_pos_freq[i,:] = sat_pos_freq_i |
|
|
|
|
z[i,:] = z_i |
|
|
|
|
R[i,:,:] = R_i |
|
|
|
|
sat_pos_freq[i, :] = sat_pos_freq_i |
|
|
|
|
z[i, :] = z_i |
|
|
|
|
R[i, :, :] = R_i |
|
|
|
|
return self.filter.predict_and_update_batch(t, kind, z, R, sat_pos_freq) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def predict_and_update_pseudorange_rate(self, meas, t, kind): |
|
|
|
|
R = np.zeros((len(meas), 1, 1)) |
|
|
|
|
z = np.zeros((len(meas), 1)) |
|
|
|
@ -462,61 +457,63 @@ class LocKalman(): |
|
|
|
|
for i, m in enumerate(meas): |
|
|
|
|
z_i, R_i, sat_pos_vel_i = parse_prr(m) |
|
|
|
|
sat_pos_vel[i] = sat_pos_vel_i |
|
|
|
|
R[i,:,:] = R_i |
|
|
|
|
R[i, :, :] = R_i |
|
|
|
|
z[i, :] = z_i |
|
|
|
|
return self.filter.predict_and_update_batch(t, kind, z, R, sat_pos_vel) |
|
|
|
|
|
|
|
|
|
def predict_and_update_orb(self, orb, t, kind): |
|
|
|
|
true_pos = orb[:,2:] |
|
|
|
|
z = orb[:,:2] |
|
|
|
|
true_pos = orb[:, 2:] |
|
|
|
|
z = orb[:, :2] |
|
|
|
|
R = np.zeros((len(orb), 2, 2)) |
|
|
|
|
for i, _ in enumerate(z): |
|
|
|
|
R[i,:,:] = np.diag([10**2, 10**2]) |
|
|
|
|
R[i, :, :] = np.diag([10**2, 10**2]) |
|
|
|
|
return self.filter.predict_and_update_batch(t, kind, z, R, true_pos) |
|
|
|
|
|
|
|
|
|
def predict_and_update_odo_speed(self, speed, t, kind): |
|
|
|
|
z = np.array(speed) |
|
|
|
|
R = np.zeros((len(speed), 1, 1)) |
|
|
|
|
for i, _ in enumerate(z): |
|
|
|
|
R[i,:,:] = np.diag([0.2**2]) |
|
|
|
|
R[i, :, :] = np.diag([0.2**2]) |
|
|
|
|
return self.filter.predict_and_update_batch(t, kind, z, R) |
|
|
|
|
|
|
|
|
|
def predict_and_update_odo_trans(self, trans, t, kind): |
|
|
|
|
z = trans[:,:3] |
|
|
|
|
z = trans[:, :3] |
|
|
|
|
R = np.zeros((len(trans), 3, 3)) |
|
|
|
|
for i, _ in enumerate(z): |
|
|
|
|
R[i,:,:] = np.diag(trans[i,3:]**2) |
|
|
|
|
R[i, :, :] = np.diag(trans[i, 3:]**2) |
|
|
|
|
return self.filter.predict_and_update_batch(t, kind, z, R) |
|
|
|
|
|
|
|
|
|
def predict_and_update_odo_rot(self, rot, t, kind): |
|
|
|
|
z = rot[:,:3] |
|
|
|
|
z = rot[:, :3] |
|
|
|
|
R = np.zeros((len(rot), 3, 3)) |
|
|
|
|
for i, _ in enumerate(z): |
|
|
|
|
R[i,:,:] = np.diag(rot[i,3:]**2) |
|
|
|
|
R[i, :, :] = np.diag(rot[i, 3:]**2) |
|
|
|
|
return self.filter.predict_and_update_batch(t, kind, z, R) |
|
|
|
|
|
|
|
|
|
def predict_and_update_orb_features(self, tracks, t, kind): |
|
|
|
|
k = 2*(self.N+1) |
|
|
|
|
k = 2 * (self.N + 1) |
|
|
|
|
R = np.zeros((len(tracks), k, k)) |
|
|
|
|
z = np.zeros((len(tracks), k)) |
|
|
|
|
ecef_pos = np.zeros((len(tracks), 3)) |
|
|
|
|
ecef_pos[:] = np.nan |
|
|
|
|
poses = self.x[self.dim_main:].reshape((-1,7)) |
|
|
|
|
times = tracks.reshape((len(tracks),self.N+1, 4))[:,:,0] |
|
|
|
|
poses = self.x[self.dim_main:].reshape((-1, 7)) |
|
|
|
|
times = tracks.reshape((len(tracks), self.N + 1, 4))[:, :, 0] |
|
|
|
|
good_counter = 0 |
|
|
|
|
if times.any() and np.allclose(times[0,:-1], self.filter.augment_times, rtol=1e-6): |
|
|
|
|
if times.any() and np.allclose(times[0, :-1], self.filter.augment_times, rtol=1e-6): |
|
|
|
|
for i, track in enumerate(tracks): |
|
|
|
|
img_positions = track.reshape((self.N+1, 4))[:,2:] |
|
|
|
|
img_positions = track.reshape((self.N + 1, 4))[:, 2:] |
|
|
|
|
|
|
|
|
|
# TODO not perfect as last pose not used |
|
|
|
|
#img_positions = unroll_shutter(img_positions, poses, self.filter.state()[7:10], self.filter.state()[10:13], ecef_pos[i]) |
|
|
|
|
# img_positions = unroll_shutter(img_positions, poses, self.filter.state()[7:10], self.filter.state()[10:13], ecef_pos[i]) |
|
|
|
|
|
|
|
|
|
ecef_pos[i] = self.computer.compute_pos(poses, img_positions[:-1]) |
|
|
|
|
z[i] = img_positions.flatten() |
|
|
|
|
R[i,:,:] = np.diag([0.005**2]*(k)) |
|
|
|
|
R[i, :, :] = np.diag([0.005**2] * (k)) |
|
|
|
|
if np.isfinite(ecef_pos[i][0]): |
|
|
|
|
good_counter += 1 |
|
|
|
|
if good_counter > self.max_tracks: |
|
|
|
|
break |
|
|
|
|
good_idxs = np.all(np.isfinite(ecef_pos),axis=1) |
|
|
|
|
good_idxs = np.all(np.isfinite(ecef_pos), axis=1) |
|
|
|
|
# have to do some weird stuff here to keep |
|
|
|
|
# to have the observations input from mesh3d |
|
|
|
|
# consistent with the outputs of the filter |
|
|
|
@ -524,8 +521,8 @@ class LocKalman(): |
|
|
|
|
ret = self.filter.predict_and_update_batch(t, kind, z[good_idxs], R[good_idxs], ecef_pos[good_idxs], augment=True) |
|
|
|
|
if ret is None: |
|
|
|
|
return |
|
|
|
|
|
|
|
|
|
y_full = np.zeros((z.shape[0], z.shape[1] - 3)) |
|
|
|
|
#print sum(good_idxs), len(tracks) |
|
|
|
|
if sum(good_idxs) > 0: |
|
|
|
|
y_full[good_idxs] = np.array(ret[6]) |
|
|
|
|
ret = ret[:6] + (y_full, z, ecef_pos) |
|
|
|
@ -537,7 +534,7 @@ class LocKalman(): |
|
|
|
|
R = np.zeros((len(test_data), len(z[0]), len(z[0]))) |
|
|
|
|
ecef_pos = [self.x[:3]] |
|
|
|
|
for i, _ in enumerate(z): |
|
|
|
|
R[i,:,:] = np.diag([0.1**2]*len(z[0])) |
|
|
|
|
R[i, :, :] = np.diag([0.1**2] * len(z[0])) |
|
|
|
|
ret = self.filter.predict_and_update_batch(t, kind, z, R, ecef_pos) |
|
|
|
|
self.filter.augment() |
|
|
|
|
return ret |
|
|
|
|