lagd: estimate std (#35009)

* Std

* Fix static

* Refactor

* Assert std zero
pull/35030/head
Kacper Rączy 1 week ago committed by GitHub
parent c933914f86
commit 06a9483a24
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
  1. 1
      cereal/log.capnp
  2. 39
      selfdrive/locationd/lagd.py
  3. 2
      selfdrive/locationd/test/test_lagd.py

@ -2284,6 +2284,7 @@ struct LiveDelayData {
status @2 :Status;
lateralDelayEstimate @3 :Float32;
lateralDelayEstimateStd @5 :Float32;
points @4 :List(Float32);
enum Status {

@ -24,6 +24,7 @@ MIN_ABS_YAW_RATE = np.radians(1.0)
MAX_YAW_RATE_SANITY_CHECK = 1.0
MIN_NCC = 0.95
MAX_LAG = 1.0
MAX_LAG_STD = 0.1
MAX_LAT_ACCEL = 2.0
MAX_LAT_ACCEL_DIFF = 0.6
@ -127,13 +128,23 @@ class BlockAverage:
self.block_idx = (self.block_idx + 1) % self.num_blocks
self.valid_blocks = min(self.valid_blocks + 1, self.num_blocks)
def get(self) -> tuple[float, float]:
def get(self) -> tuple[float, float, float, float]:
valid_block_idx = [i for i in range(self.valid_blocks) if i != self.block_idx]
valid_and_current_idx = valid_block_idx + ([self.block_idx] if self.idx > 0 else [])
valid_mean = float(np.mean(self.values[valid_block_idx], axis=0).item()) if len(valid_block_idx) > 0 else float('nan')
current_mean = float(np.mean(self.values[valid_and_current_idx], axis=0).item()) if len(valid_and_current_idx) > 0 else float('nan')
return valid_mean, current_mean
if len(valid_block_idx) > 0:
valid_mean = float(np.mean(self.values[valid_block_idx], axis=0).item())
valid_std = float(np.std(self.values[valid_block_idx], axis=0).item())
else:
valid_mean, valid_std = float('nan'), float('nan')
if len(valid_and_current_idx) > 0:
current_mean = float(np.mean(self.values[valid_and_current_idx], axis=0).item())
current_std = float(np.std(self.values[valid_and_current_idx], axis=0).item())
else:
current_mean, current_std = float('nan'), float('nan')
return valid_mean, valid_std, current_mean, current_std
class LateralLagEstimator:
@ -190,17 +201,27 @@ class LateralLagEstimator:
liveDelay = msg.liveDelay
valid_mean_lag, current_mean_lag = self.block_avg.get()
if self.block_avg.valid_blocks >= self.min_valid_block_count and not np.isnan(valid_mean_lag):
liveDelay.status = log.LiveDelayData.Status.estimated
liveDelay.lateralDelay = valid_mean_lag
valid_mean_lag, valid_std, current_mean_lag, current_std = self.block_avg.get()
if self.block_avg.valid_blocks >= self.min_valid_block_count and not np.isnan(valid_mean_lag) and not np.isnan(valid_std):
if valid_std > MAX_LAG_STD:
liveDelay.status = log.LiveDelayData.Status.invalid
else:
liveDelay.status = log.LiveDelayData.Status.estimated
else:
liveDelay.status = log.LiveDelayData.Status.unestimated
if liveDelay.status == log.LiveDelayData.Status.estimated:
liveDelay.lateralDelay = valid_mean_lag
else:
liveDelay.lateralDelay = self.initial_lag
if not np.isnan(current_mean_lag):
if not np.isnan(current_mean_lag) and not np.isnan(current_std):
liveDelay.lateralDelayEstimate = current_mean_lag
liveDelay.lateralDelayEstimateStd = current_std
else:
liveDelay.lateralDelayEstimate = self.initial_lag
liveDelay.lateralDelayEstimateStd = 0.0
liveDelay.validBlocks = self.block_avg.valid_blocks
if debug:
liveDelay.points = self.block_avg.values.flatten().tolist()

@ -113,6 +113,7 @@ class TestLagd:
assert msg.liveDelay.status == 'estimated'
assert np.allclose(msg.liveDelay.lateralDelay, lag_frames * DT, atol=0.01)
assert np.allclose(msg.liveDelay.lateralDelayEstimate, lag_frames * DT, atol=0.01)
assert np.allclose(msg.liveDelay.lateralDelayEstimateStd, 0.0, atol=0.01)
assert msg.liveDelay.validBlocks == BLOCK_NUM_NEEDED
def test_estimator_masking(self, mocker):
@ -121,6 +122,7 @@ class TestLagd:
process_messages(mocker, estimator, lag_frames, (int(MIN_OKAY_WINDOW_SEC / DT) + BLOCK_SIZE) * 2, rejection_threshold=0.4)
msg = estimator.get_msg(True)
assert np.allclose(msg.liveDelay.lateralDelayEstimate, lag_frames * DT, atol=0.01)
assert np.allclose(msg.liveDelay.lateralDelayEstimateStd, 0.0, atol=0.01)
@pytest.mark.skipif(PC, reason="only on device")
@pytest.mark.timeout(60)

Loading…
Cancel
Save