|
|
|
@ -24,6 +24,7 @@ MIN_ABS_YAW_RATE = np.radians(1.0) |
|
|
|
|
MAX_YAW_RATE_SANITY_CHECK = 1.0 |
|
|
|
|
MIN_NCC = 0.95 |
|
|
|
|
MAX_LAG = 1.0 |
|
|
|
|
MAX_LAG_STD = 0.1 |
|
|
|
|
MAX_LAT_ACCEL = 2.0 |
|
|
|
|
MAX_LAT_ACCEL_DIFF = 0.6 |
|
|
|
|
|
|
|
|
@ -127,13 +128,23 @@ class BlockAverage: |
|
|
|
|
self.block_idx = (self.block_idx + 1) % self.num_blocks |
|
|
|
|
self.valid_blocks = min(self.valid_blocks + 1, self.num_blocks) |
|
|
|
|
|
|
|
|
|
def get(self) -> tuple[float, float]: |
|
|
|
|
def get(self) -> tuple[float, float, float, float]: |
|
|
|
|
valid_block_idx = [i for i in range(self.valid_blocks) if i != self.block_idx] |
|
|
|
|
valid_and_current_idx = valid_block_idx + ([self.block_idx] if self.idx > 0 else []) |
|
|
|
|
|
|
|
|
|
valid_mean = float(np.mean(self.values[valid_block_idx], axis=0).item()) if len(valid_block_idx) > 0 else float('nan') |
|
|
|
|
current_mean = float(np.mean(self.values[valid_and_current_idx], axis=0).item()) if len(valid_and_current_idx) > 0 else float('nan') |
|
|
|
|
return valid_mean, current_mean |
|
|
|
|
if len(valid_block_idx) > 0: |
|
|
|
|
valid_mean = float(np.mean(self.values[valid_block_idx], axis=0).item()) |
|
|
|
|
valid_std = float(np.std(self.values[valid_block_idx], axis=0).item()) |
|
|
|
|
else: |
|
|
|
|
valid_mean, valid_std = float('nan'), float('nan') |
|
|
|
|
|
|
|
|
|
if len(valid_and_current_idx) > 0: |
|
|
|
|
current_mean = float(np.mean(self.values[valid_and_current_idx], axis=0).item()) |
|
|
|
|
current_std = float(np.std(self.values[valid_and_current_idx], axis=0).item()) |
|
|
|
|
else: |
|
|
|
|
current_mean, current_std = float('nan'), float('nan') |
|
|
|
|
|
|
|
|
|
return valid_mean, valid_std, current_mean, current_std |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class LateralLagEstimator: |
|
|
|
@ -190,17 +201,27 @@ class LateralLagEstimator: |
|
|
|
|
|
|
|
|
|
liveDelay = msg.liveDelay |
|
|
|
|
|
|
|
|
|
valid_mean_lag, current_mean_lag = self.block_avg.get() |
|
|
|
|
if self.block_avg.valid_blocks >= self.min_valid_block_count and not np.isnan(valid_mean_lag): |
|
|
|
|
liveDelay.status = log.LiveDelayData.Status.estimated |
|
|
|
|
liveDelay.lateralDelay = valid_mean_lag |
|
|
|
|
valid_mean_lag, valid_std, current_mean_lag, current_std = self.block_avg.get() |
|
|
|
|
if self.block_avg.valid_blocks >= self.min_valid_block_count and not np.isnan(valid_mean_lag) and not np.isnan(valid_std): |
|
|
|
|
if valid_std > MAX_LAG_STD: |
|
|
|
|
liveDelay.status = log.LiveDelayData.Status.invalid |
|
|
|
|
else: |
|
|
|
|
liveDelay.status = log.LiveDelayData.Status.estimated |
|
|
|
|
else: |
|
|
|
|
liveDelay.status = log.LiveDelayData.Status.unestimated |
|
|
|
|
|
|
|
|
|
if liveDelay.status == log.LiveDelayData.Status.estimated: |
|
|
|
|
liveDelay.lateralDelay = valid_mean_lag |
|
|
|
|
else: |
|
|
|
|
liveDelay.lateralDelay = self.initial_lag |
|
|
|
|
if not np.isnan(current_mean_lag): |
|
|
|
|
|
|
|
|
|
if not np.isnan(current_mean_lag) and not np.isnan(current_std): |
|
|
|
|
liveDelay.lateralDelayEstimate = current_mean_lag |
|
|
|
|
liveDelay.lateralDelayEstimateStd = current_std |
|
|
|
|
else: |
|
|
|
|
liveDelay.lateralDelayEstimate = self.initial_lag |
|
|
|
|
liveDelay.lateralDelayEstimateStd = 0.0 |
|
|
|
|
|
|
|
|
|
liveDelay.validBlocks = self.block_avg.valid_blocks |
|
|
|
|
if debug: |
|
|
|
|
liveDelay.points = self.block_avg.values.flatten().tolist() |
|
|
|
|