gc old stuff in modeld

pull/34750/head
Adeeb Shihadeh 2 months ago
parent 54f1b00447
commit 0abe348283
  1. 101
      selfdrive/modeld/tests/dmon_lag/repro.cc
  2. 2
      selfdrive/modeld/tests/tf_test/build.sh
  3. 69
      selfdrive/modeld/tests/tf_test/main.cc
  4. 8
      selfdrive/modeld/tests/tf_test/pb_loader.py
  5. 39
      selfdrive/modeld/tests/timing/benchmark.py

@ -1,101 +0,0 @@
// clang++ -O2 repro.cc && ./a.out
#include <sched.h>
#include <sys/types.h>
#include <unistd.h>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <ctime>
static inline double millis_since_boot() {
struct timespec t;
clock_gettime(CLOCK_BOOTTIME, &t);
return t.tv_sec * 1000.0 + t.tv_nsec * 1e-6;
}
#define MODEL_WIDTH 320
#define MODEL_HEIGHT 640
// null function still breaks it
#define input_lambda(x) x
// this is copied from models/dmonitoring.cc, and is the code that triggers the issue
void inner(uint8_t *resized_buf, float *net_input_buf) {
int resized_width = MODEL_WIDTH;
int resized_height = MODEL_HEIGHT;
// one shot conversion, O(n) anyway
// yuvframe2tensor, normalize
for (int r = 0; r < MODEL_HEIGHT/2; r++) {
for (int c = 0; c < MODEL_WIDTH/2; c++) {
// Y_ul
net_input_buf[(c*MODEL_HEIGHT/2) + r] = input_lambda(resized_buf[(2*r*resized_width) + (2*c)]);
// Y_ur
net_input_buf[(c*MODEL_HEIGHT/2) + r + (2*(MODEL_WIDTH/2)*(MODEL_HEIGHT/2))] = input_lambda(resized_buf[(2*r*resized_width) + (2*c+1)]);
// Y_dl
net_input_buf[(c*MODEL_HEIGHT/2) + r + ((MODEL_WIDTH/2)*(MODEL_HEIGHT/2))] = input_lambda(resized_buf[(2*r*resized_width+1) + (2*c)]);
// Y_dr
net_input_buf[(c*MODEL_HEIGHT/2) + r + (3*(MODEL_WIDTH/2)*(MODEL_HEIGHT/2))] = input_lambda(resized_buf[(2*r*resized_width+1) + (2*c+1)]);
// U
net_input_buf[(c*MODEL_HEIGHT/2) + r + (4*(MODEL_WIDTH/2)*(MODEL_HEIGHT/2))] = input_lambda(resized_buf[(resized_width*resized_height) + (r*resized_width/2) + c]);
// V
net_input_buf[(c*MODEL_HEIGHT/2) + r + (5*(MODEL_WIDTH/2)*(MODEL_HEIGHT/2))] = input_lambda(resized_buf[(resized_width*resized_height) + ((resized_width/2)*(resized_height/2)) + (r*resized_width/2) + c]);
}
}
}
float trial() {
int resized_width = MODEL_WIDTH;
int resized_height = MODEL_HEIGHT;
int yuv_buf_len = (MODEL_WIDTH/2) * (MODEL_HEIGHT/2) * 6; // Y|u|v -> y|y|y|y|u|v
// allocate the buffers
uint8_t *resized_buf = (uint8_t*)malloc(resized_width*resized_height*3/2);
float *net_input_buf = (float*)malloc(yuv_buf_len*sizeof(float));
printf("allocate -- %p 0x%x -- %p 0x%lx\n", resized_buf, resized_width*resized_height*3/2, net_input_buf, yuv_buf_len*sizeof(float));
// test for bad buffers
static int CNT = 20;
float avg = 0.0;
for (int i = 0; i < CNT; i++) {
double s4 = millis_since_boot();
inner(resized_buf, net_input_buf);
double s5 = millis_since_boot();
avg += s5-s4;
}
avg /= CNT;
// once it's bad, it's reliably bad
if (avg > 10) {
printf("HIT %f\n", avg);
printf("BAD\n");
for (int i = 0; i < 200; i++) {
double s4 = millis_since_boot();
inner(resized_buf, net_input_buf);
double s5 = millis_since_boot();
printf("%.2f ", s5-s4);
}
printf("\n");
exit(0);
}
// don't free so we get a different buffer each time
//free(resized_buf);
//free(net_input_buf);
return avg;
}
int main() {
while (true) {
float ret = trial();
printf("got %f\n", ret);
}
}

@ -1,2 +0,0 @@
#!/usr/bin/env bash
clang++ -I /home/batman/one/external/tensorflow/include/ -L /home/batman/one/external/tensorflow/lib -Wl,-rpath=/home/batman/one/external/tensorflow/lib main.cc -ltensorflow

@ -1,69 +0,0 @@
#include <cassert>
#include <cstdio>
#include <cstdlib>
#include "tensorflow/c/c_api.h"
void* read_file(const char* path, size_t* out_len) {
FILE* f = fopen(path, "r");
if (!f) {
return NULL;
}
fseek(f, 0, SEEK_END);
long f_len = ftell(f);
rewind(f);
char* buf = (char*)calloc(f_len, 1);
assert(buf);
size_t num_read = fread(buf, f_len, 1, f);
fclose(f);
if (num_read != 1) {
free(buf);
return NULL;
}
if (out_len) {
*out_len = f_len;
}
return buf;
}
static void DeallocateBuffer(void* data, size_t) {
free(data);
}
int main(int argc, char* argv[]) {
TF_Buffer* buf;
TF_Graph* graph;
TF_Status* status;
char *path = argv[1];
// load model
{
size_t model_size;
char tmp[1024];
snprintf(tmp, sizeof(tmp), "%s.pb", path);
printf("loading model %s\n", tmp);
uint8_t *model_data = (uint8_t *)read_file(tmp, &model_size);
buf = TF_NewBuffer();
buf->data = model_data;
buf->length = model_size;
buf->data_deallocator = DeallocateBuffer;
printf("loaded model of size %d\n", model_size);
}
// import graph
status = TF_NewStatus();
graph = TF_NewGraph();
TF_ImportGraphDefOptions *opts = TF_NewImportGraphDefOptions();
TF_GraphImportGraphDef(graph, buf, opts, status);
TF_DeleteImportGraphDefOptions(opts);
TF_DeleteBuffer(buf);
if (TF_GetCode(status) != TF_OK) {
printf("FAIL: %s\n", TF_Message(status));
} else {
printf("SUCCESS\n");
}
}

@ -1,8 +0,0 @@
#!/usr/bin/env python3
import sys
import tensorflow as tf
with open(sys.argv[1], "rb") as f:
graph_def = tf.compat.v1.GraphDef()
graph_def.ParseFromString(f.read())
#tf.io.write_graph(graph_def, '', sys.argv[1]+".try")

@ -1,39 +0,0 @@
#!/usr/bin/env python3
# type: ignore
import os
import time
import numpy as np
import cereal.messaging as messaging
from openpilot.system.manager.process_config import managed_processes
N = int(os.getenv("N", "5"))
TIME = int(os.getenv("TIME", "30"))
if __name__ == "__main__":
sock = messaging.sub_sock('modelV2', conflate=False, timeout=1000)
execution_times = []
for _ in range(N):
os.environ['LOGPRINT'] = 'debug'
managed_processes['modeld'].start()
time.sleep(5)
t = []
start = time.monotonic()
while time.monotonic() - start < TIME:
msgs = messaging.drain_sock(sock, wait_for_one=True)
for m in msgs:
t.append(m.modelV2.modelExecutionTime)
execution_times.append(np.array(t[10:]) * 1000)
managed_processes['modeld'].stop()
print("\n\n")
print(f"ran modeld {N} times for {TIME}s each")
for _, t in enumerate(execution_times):
print(f"\tavg: {sum(t)/len(t):0.2f}ms, min: {min(t):0.2f}ms, max: {max(t):0.2f}ms")
print("\n\n")
Loading…
Cancel
Save