Tinygrad runner (#34261)
	
		
	
				
					
				
			* squash * dmonitoringmodeld: use cl transform (#34235) * needs cleanup * only if tici * bump tinygrad * check width * base modelframe * . * need to be args * more cleanup * no _frame in base * tici only * its DrivingModelFrame * .6 is fair --------- Co-authored-by: Comma Device <device@comma.ai> * Update tinygrad * tg upstream * bump tg * bump tg * debug * attr * misc cleanup * whitespace * remove * Add TODOs to make python proc for modelrunners * whitespace --------- Co-authored-by: ZwX1616 <zwx1616@gmail.com> Co-authored-by: Comma Device <device@comma.ai> Co-authored-by: Maxime Desroches <desroches.maxime@gmail.com>pull/34289/head
							parent
							
								
									ff97a43c50
								
							
						
					
					
						commit
						17ca6389e1
					
				
				 39 changed files with 175 additions and 1483 deletions
			
			
		| @ -1,10 +1,4 @@ | ||||
| #!/usr/bin/env bash | ||||
| 
 | ||||
| DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" >/dev/null && pwd)" | ||||
| cd "$DIR/../../" | ||||
| 
 | ||||
| if [ -f "$DIR/libthneed.so" ]; then | ||||
|   export LD_PRELOAD="$DIR/libthneed.so" | ||||
| fi | ||||
| 
 | ||||
| exec "$DIR/dmonitoringmodeld.py" "$@" | ||||
|  | ||||
| @ -1,10 +1,4 @@ | ||||
| #!/usr/bin/env bash | ||||
| 
 | ||||
| DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" >/dev/null && pwd)" | ||||
| cd "$DIR/../../" | ||||
| 
 | ||||
| if [ -f "$DIR/libthneed.so" ]; then | ||||
|   export LD_PRELOAD="$DIR/libthneed.so" | ||||
| fi | ||||
| 
 | ||||
| exec "$DIR/modeld.py" "$@" | ||||
|  | ||||
| @ -1,27 +0,0 @@ | ||||
| import os | ||||
| from openpilot.system.hardware import TICI | ||||
| from openpilot.selfdrive.modeld.runners.runmodel_pyx import RunModel, Runtime | ||||
| assert Runtime | ||||
| 
 | ||||
| USE_THNEED = int(os.getenv('USE_THNEED', str(int(TICI)))) | ||||
| USE_SNPE = int(os.getenv('USE_SNPE', str(int(TICI)))) | ||||
| 
 | ||||
| class ModelRunner(RunModel): | ||||
|   THNEED = 'THNEED' | ||||
|   SNPE = 'SNPE' | ||||
|   ONNX = 'ONNX' | ||||
| 
 | ||||
|   def __new__(cls, paths, *args, **kwargs): | ||||
|     if ModelRunner.THNEED in paths and USE_THNEED: | ||||
|       from openpilot.selfdrive.modeld.runners.thneedmodel_pyx import ThneedModel as Runner | ||||
|       runner_type = ModelRunner.THNEED | ||||
|     elif ModelRunner.SNPE in paths and USE_SNPE: | ||||
|       from openpilot.selfdrive.modeld.runners.snpemodel_pyx import SNPEModel as Runner | ||||
|       runner_type = ModelRunner.SNPE | ||||
|     elif ModelRunner.ONNX in paths: | ||||
|       from openpilot.selfdrive.modeld.runners.onnxmodel import ONNXModel as Runner | ||||
|       runner_type = ModelRunner.ONNX | ||||
|     else: | ||||
|       raise Exception("Couldn't select a model runner, make sure to pass at least one valid model path") | ||||
| 
 | ||||
|     return Runner(str(paths[runner_type]), *args, **kwargs) | ||||
| @ -1,71 +0,0 @@ | ||||
| import os | ||||
| import onnx | ||||
| import sys | ||||
| import numpy as np | ||||
| from typing import Any | ||||
| 
 | ||||
| from openpilot.selfdrive.modeld.runners.runmodel_pyx import RunModel | ||||
| from openpilot.selfdrive.modeld.runners.ort_helpers import convert_fp16_to_fp32, ORT_TYPES_TO_NP_TYPES | ||||
| 
 | ||||
| 
 | ||||
| def create_ort_session(path, fp16_to_fp32): | ||||
|   os.environ["OMP_NUM_THREADS"] = "4" | ||||
|   os.environ["OMP_WAIT_POLICY"] = "PASSIVE" | ||||
| 
 | ||||
|   import onnxruntime as ort | ||||
|   print("Onnx available providers: ", ort.get_available_providers(), file=sys.stderr) | ||||
|   options = ort.SessionOptions() | ||||
|   options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_DISABLE_ALL | ||||
| 
 | ||||
|   provider: str | tuple[str, dict[Any, Any]] | ||||
|   if 'OpenVINOExecutionProvider' in ort.get_available_providers() and 'ONNXCPU' not in os.environ: | ||||
|     provider = 'OpenVINOExecutionProvider' | ||||
|   elif 'CUDAExecutionProvider' in ort.get_available_providers() and 'ONNXCPU' not in os.environ: | ||||
|     options.intra_op_num_threads = 2 | ||||
|     provider = ('CUDAExecutionProvider', {'cudnn_conv_algo_search': 'EXHAUSTIVE'}) | ||||
|   else: | ||||
|     options.intra_op_num_threads = 2 | ||||
|     options.execution_mode = ort.ExecutionMode.ORT_SEQUENTIAL | ||||
|     options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL | ||||
|     provider = 'CPUExecutionProvider' | ||||
| 
 | ||||
|   model_data = convert_fp16_to_fp32(onnx.load(path)) if fp16_to_fp32 else path | ||||
|   print("Onnx selected provider: ", [provider], file=sys.stderr) | ||||
|   ort_session = ort.InferenceSession(model_data, options, providers=[provider]) | ||||
|   print("Onnx using ", ort_session.get_providers(), file=sys.stderr) | ||||
|   return ort_session | ||||
| 
 | ||||
| 
 | ||||
| class ONNXModel(RunModel): | ||||
|   def __init__(self, path, output, runtime, use_tf8, cl_context): | ||||
|     self.inputs = {} | ||||
|     self.output = output | ||||
| 
 | ||||
|     self.session = create_ort_session(path, fp16_to_fp32=True) | ||||
|     self.input_names = [x.name for x in self.session.get_inputs()] | ||||
|     self.input_shapes = {x.name: [1, *x.shape[1:]] for x in self.session.get_inputs()} | ||||
|     self.input_dtypes = {x.name: ORT_TYPES_TO_NP_TYPES[x.type] for x in self.session.get_inputs()} | ||||
| 
 | ||||
|     # run once to initialize CUDA provider | ||||
|     if "CUDAExecutionProvider" in self.session.get_providers(): | ||||
|       self.session.run(None, {k: np.zeros(self.input_shapes[k], dtype=self.input_dtypes[k]) for k in self.input_names}) | ||||
|     print("ready to run onnx model", self.input_shapes, file=sys.stderr) | ||||
| 
 | ||||
|   def addInput(self, name, buffer): | ||||
|     assert name in self.input_names | ||||
|     self.inputs[name] = buffer | ||||
| 
 | ||||
|   def setInputBuffer(self, name, buffer): | ||||
|     assert name in self.inputs | ||||
|     self.inputs[name] = buffer | ||||
| 
 | ||||
|   def getCLBuffer(self, name): | ||||
|     return None | ||||
| 
 | ||||
|   def execute(self): | ||||
|     inputs = {k: v.view(self.input_dtypes[k]) for k,v in self.inputs.items()} | ||||
|     inputs = {k: v.reshape(self.input_shapes[k]).astype(self.input_dtypes[k]) for k,v in inputs.items()} | ||||
|     outputs = self.session.run(None, inputs) | ||||
|     assert len(outputs) == 1, "Only single model outputs are supported" | ||||
|     self.output[:] = outputs[0] | ||||
|     return self.output | ||||
| @ -1,4 +0,0 @@ | ||||
| #pragma once | ||||
| 
 | ||||
| #include "selfdrive/modeld/runners/runmodel.h" | ||||
| #include "selfdrive/modeld/runners/snpemodel.h" | ||||
| @ -1,49 +0,0 @@ | ||||
| #pragma once | ||||
| 
 | ||||
| #include <string> | ||||
| #include <vector> | ||||
| #include <memory> | ||||
| #include <cassert> | ||||
| 
 | ||||
| #include "common/clutil.h" | ||||
| #include "common/swaglog.h" | ||||
| 
 | ||||
| #define USE_CPU_RUNTIME 0 | ||||
| #define USE_GPU_RUNTIME 1 | ||||
| #define USE_DSP_RUNTIME 2 | ||||
| 
 | ||||
| struct ModelInput { | ||||
|   const std::string name; | ||||
|   float *buffer; | ||||
|   int size; | ||||
| 
 | ||||
|   ModelInput(const std::string _name, float *_buffer, int _size) : name(_name), buffer(_buffer), size(_size) {} | ||||
|   virtual void setBuffer(float *_buffer, int _size) { | ||||
|     assert(size == _size || size == 0); | ||||
|     buffer = _buffer; | ||||
|     size = _size; | ||||
|   } | ||||
| }; | ||||
| 
 | ||||
| class RunModel { | ||||
| public: | ||||
|   std::vector<std::unique_ptr<ModelInput>> inputs; | ||||
| 
 | ||||
|   virtual ~RunModel() {} | ||||
|   virtual void execute() {} | ||||
|   virtual void* getCLBuffer(const std::string name) { return nullptr; } | ||||
| 
 | ||||
|   virtual void addInput(const std::string name, float *buffer, int size) { | ||||
|     inputs.push_back(std::unique_ptr<ModelInput>(new ModelInput(name, buffer, size))); | ||||
|   } | ||||
|   virtual void setInputBuffer(const std::string name, float *buffer, int size) { | ||||
|     for (auto &input : inputs) { | ||||
|       if (name == input->name) { | ||||
|         input->setBuffer(buffer, size); | ||||
|         return; | ||||
|       } | ||||
|     } | ||||
|     LOGE("Tried to update input `%s` but no input with this name exists", name.c_str()); | ||||
|     assert(false); | ||||
|   } | ||||
| }; | ||||
| @ -1,14 +0,0 @@ | ||||
| # distutils: language = c++ | ||||
| 
 | ||||
| from libcpp.string cimport string | ||||
| 
 | ||||
| cdef extern from "selfdrive/modeld/runners/runmodel.h": | ||||
|   cdef int USE_CPU_RUNTIME | ||||
|   cdef int USE_GPU_RUNTIME | ||||
|   cdef int USE_DSP_RUNTIME | ||||
| 
 | ||||
|   cdef cppclass RunModel: | ||||
|     void addInput(string, float*, int) | ||||
|     void setInputBuffer(string, float*, int) | ||||
|     void * getCLBuffer(string) | ||||
|     void execute() | ||||
| @ -1,6 +0,0 @@ | ||||
| # distutils: language = c++ | ||||
| 
 | ||||
| from .runmodel cimport RunModel as cppRunModel | ||||
| 
 | ||||
| cdef class RunModel: | ||||
|   cdef cppRunModel * model | ||||
| @ -1,37 +0,0 @@ | ||||
| # distutils: language = c++ | ||||
| # cython: c_string_encoding=ascii, language_level=3 | ||||
| 
 | ||||
| from libcpp.string cimport string | ||||
| 
 | ||||
| from .runmodel cimport USE_CPU_RUNTIME, USE_GPU_RUNTIME, USE_DSP_RUNTIME | ||||
| from selfdrive.modeld.models.commonmodel_pyx cimport CLMem | ||||
| 
 | ||||
| class Runtime: | ||||
|   CPU = USE_CPU_RUNTIME | ||||
|   GPU = USE_GPU_RUNTIME | ||||
|   DSP = USE_DSP_RUNTIME | ||||
| 
 | ||||
| cdef class RunModel: | ||||
|   def __dealloc__(self): | ||||
|     del self.model | ||||
| 
 | ||||
|   def addInput(self, string name, float[:] buffer): | ||||
|     if buffer is not None: | ||||
|       self.model.addInput(name, &buffer[0], len(buffer)) | ||||
|     else: | ||||
|       self.model.addInput(name, NULL, 0) | ||||
| 
 | ||||
|   def setInputBuffer(self, string name, float[:] buffer): | ||||
|     if buffer is not None: | ||||
|       self.model.setInputBuffer(name, &buffer[0], len(buffer)) | ||||
|     else: | ||||
|       self.model.setInputBuffer(name, NULL, 0) | ||||
| 
 | ||||
|   def getCLBuffer(self, string name): | ||||
|     cdef void * cl_buf = self.model.getCLBuffer(name) | ||||
|     if not cl_buf: | ||||
|       return None | ||||
|     return CLMem.create(cl_buf) | ||||
| 
 | ||||
|   def execute(self): | ||||
|     self.model.execute() | ||||
| @ -1,116 +0,0 @@ | ||||
| #pragma clang diagnostic ignored "-Wexceptions" | ||||
| 
 | ||||
| #include "selfdrive/modeld/runners/snpemodel.h" | ||||
| 
 | ||||
| #include <cstring> | ||||
| #include <memory> | ||||
| #include <string> | ||||
| #include <utility> | ||||
| #include <vector> | ||||
| 
 | ||||
| #include "common/util.h" | ||||
| #include "common/timing.h" | ||||
| 
 | ||||
| void PrintErrorStringAndExit() { | ||||
|   std::cerr << zdl::DlSystem::getLastErrorString() << std::endl; | ||||
|   std::exit(EXIT_FAILURE); | ||||
| } | ||||
| 
 | ||||
| SNPEModel::SNPEModel(const std::string path, float *_output, size_t _output_size, int runtime, bool _use_tf8, cl_context context) { | ||||
|   output = _output; | ||||
|   output_size = _output_size; | ||||
|   use_tf8 = _use_tf8; | ||||
| 
 | ||||
| #ifdef QCOM2 | ||||
|   if (runtime == USE_GPU_RUNTIME) { | ||||
|     snpe_runtime = zdl::DlSystem::Runtime_t::GPU; | ||||
|   } else if (runtime == USE_DSP_RUNTIME) { | ||||
|     snpe_runtime = zdl::DlSystem::Runtime_t::DSP; | ||||
|   } else { | ||||
|     snpe_runtime = zdl::DlSystem::Runtime_t::CPU; | ||||
|   } | ||||
|   assert(zdl::SNPE::SNPEFactory::isRuntimeAvailable(snpe_runtime)); | ||||
| #endif | ||||
|   model_data = util::read_file(path); | ||||
|   assert(model_data.size() > 0); | ||||
| 
 | ||||
|   // load model
 | ||||
|   std::unique_ptr<zdl::DlContainer::IDlContainer> container = zdl::DlContainer::IDlContainer::open((uint8_t*)model_data.data(), model_data.size()); | ||||
|   if (!container) { PrintErrorStringAndExit(); } | ||||
|   LOGW("loaded model with size: %lu", model_data.size()); | ||||
| 
 | ||||
|   // create model runner
 | ||||
|   zdl::SNPE::SNPEBuilder snpe_builder(container.get()); | ||||
|   while (!snpe) { | ||||
| #ifdef QCOM2 | ||||
|     snpe = snpe_builder.setOutputLayers({}) | ||||
|                        .setRuntimeProcessor(snpe_runtime) | ||||
|                        .setUseUserSuppliedBuffers(true) | ||||
|                        .setPerformanceProfile(zdl::DlSystem::PerformanceProfile_t::HIGH_PERFORMANCE) | ||||
|                        .build(); | ||||
| #else | ||||
|     snpe = snpe_builder.setOutputLayers({}) | ||||
|                        .setUseUserSuppliedBuffers(true) | ||||
|                        .setPerformanceProfile(zdl::DlSystem::PerformanceProfile_t::HIGH_PERFORMANCE) | ||||
|                        .build(); | ||||
| #endif | ||||
|     if (!snpe) std::cerr << zdl::DlSystem::getLastErrorString() << std::endl; | ||||
|   } | ||||
| 
 | ||||
|   // create output buffer
 | ||||
|   zdl::DlSystem::UserBufferEncodingFloat ub_encoding_float; | ||||
|   zdl::DlSystem::IUserBufferFactory &ub_factory = zdl::SNPE::SNPEFactory::getUserBufferFactory(); | ||||
| 
 | ||||
|   const auto &output_tensor_names_opt = snpe->getOutputTensorNames(); | ||||
|   if (!output_tensor_names_opt) throw std::runtime_error("Error obtaining output tensor names"); | ||||
|   const auto &output_tensor_names = *output_tensor_names_opt; | ||||
|   assert(output_tensor_names.size() == 1); | ||||
|   const char *output_tensor_name = output_tensor_names.at(0); | ||||
|   const zdl::DlSystem::TensorShape &buffer_shape = snpe->getInputOutputBufferAttributes(output_tensor_name)->getDims(); | ||||
|   if (output_size != 0) { | ||||
|     assert(output_size == buffer_shape[1]); | ||||
|   } else { | ||||
|     output_size = buffer_shape[1]; | ||||
|   } | ||||
|   std::vector<size_t> output_strides = {output_size * sizeof(float), sizeof(float)}; | ||||
|   output_buffer = ub_factory.createUserBuffer(output, output_size * sizeof(float), output_strides, &ub_encoding_float); | ||||
|   output_map.add(output_tensor_name, output_buffer.get()); | ||||
| } | ||||
| 
 | ||||
| void SNPEModel::addInput(const std::string name, float *buffer, int size) { | ||||
|   const int idx = inputs.size(); | ||||
|   const auto &input_tensor_names_opt = snpe->getInputTensorNames(); | ||||
|   if (!input_tensor_names_opt) throw std::runtime_error("Error obtaining input tensor names"); | ||||
|   const auto &input_tensor_names = *input_tensor_names_opt; | ||||
|   const char *input_tensor_name = input_tensor_names.at(idx); | ||||
|   const bool input_tf8 = use_tf8 && strcmp(input_tensor_name, "input_img") == 0;  // TODO: This is a terrible hack, get rid of this name check both here and in onnx_runner.py
 | ||||
|   LOGW("adding index %d: %s", idx, input_tensor_name); | ||||
| 
 | ||||
|   zdl::DlSystem::UserBufferEncodingFloat ub_encoding_float; | ||||
|   zdl::DlSystem::UserBufferEncodingTf8 ub_encoding_tf8(0, 1./255); // network takes 0-1
 | ||||
|   zdl::DlSystem::IUserBufferFactory &ub_factory = zdl::SNPE::SNPEFactory::getUserBufferFactory(); | ||||
|   zdl::DlSystem::UserBufferEncoding *input_encoding = input_tf8 ? (zdl::DlSystem::UserBufferEncoding*)&ub_encoding_tf8 : (zdl::DlSystem::UserBufferEncoding*)&ub_encoding_float; | ||||
| 
 | ||||
|   const auto &buffer_shape_opt = snpe->getInputDimensions(input_tensor_name); | ||||
|   const zdl::DlSystem::TensorShape &buffer_shape = *buffer_shape_opt; | ||||
|   size_t size_of_input = input_tf8 ? sizeof(uint8_t) : sizeof(float); | ||||
|   std::vector<size_t> strides(buffer_shape.rank()); | ||||
|   strides[strides.size() - 1] = size_of_input; | ||||
|   size_t product = 1; | ||||
|   for (size_t i = 0; i < buffer_shape.rank(); i++) product *= buffer_shape[i]; | ||||
|   size_t stride = strides[strides.size() - 1]; | ||||
|   for (size_t i = buffer_shape.rank() - 1; i > 0; i--) { | ||||
|     stride *= buffer_shape[i]; | ||||
|     strides[i-1] = stride; | ||||
|   } | ||||
| 
 | ||||
|   auto input_buffer = ub_factory.createUserBuffer(buffer, product*size_of_input, strides, input_encoding); | ||||
|   input_map.add(input_tensor_name, input_buffer.get()); | ||||
|   inputs.push_back(std::unique_ptr<SNPEModelInput>(new SNPEModelInput(name, buffer, size, std::move(input_buffer)))); | ||||
| } | ||||
| 
 | ||||
| void SNPEModel::execute() { | ||||
|   if (!snpe->execute(input_map, output_map)) { | ||||
|     PrintErrorStringAndExit(); | ||||
|   } | ||||
| } | ||||
| @ -1,52 +0,0 @@ | ||||
| #pragma once | ||||
| #pragma clang diagnostic ignored "-Wdeprecated-declarations" | ||||
| 
 | ||||
| #include <memory> | ||||
| #include <string> | ||||
| #include <utility> | ||||
| 
 | ||||
| #include <DlContainer/IDlContainer.hpp> | ||||
| #include <DlSystem/DlError.hpp> | ||||
| #include <DlSystem/ITensor.hpp> | ||||
| #include <DlSystem/ITensorFactory.hpp> | ||||
| #include <DlSystem/IUserBuffer.hpp> | ||||
| #include <DlSystem/IUserBufferFactory.hpp> | ||||
| #include <SNPE/SNPE.hpp> | ||||
| #include <SNPE/SNPEBuilder.hpp> | ||||
| #include <SNPE/SNPEFactory.hpp> | ||||
| 
 | ||||
| #include "selfdrive/modeld/runners/runmodel.h" | ||||
| 
 | ||||
| struct SNPEModelInput : public ModelInput { | ||||
|   std::unique_ptr<zdl::DlSystem::IUserBuffer> snpe_buffer; | ||||
| 
 | ||||
|   SNPEModelInput(const std::string _name, float *_buffer, int _size, std::unique_ptr<zdl::DlSystem::IUserBuffer> _snpe_buffer) : ModelInput(_name, _buffer, _size), snpe_buffer(std::move(_snpe_buffer)) {} | ||||
|   void setBuffer(float *_buffer, int _size) { | ||||
|     ModelInput::setBuffer(_buffer, _size); | ||||
|     assert(snpe_buffer->setBufferAddress(_buffer) == true); | ||||
|   } | ||||
| }; | ||||
| 
 | ||||
| class SNPEModel : public RunModel { | ||||
| public: | ||||
|   SNPEModel(const std::string path, float *_output, size_t _output_size, int runtime, bool use_tf8 = false, cl_context context = NULL); | ||||
|   void addInput(const std::string name, float *buffer, int size); | ||||
|   void execute(); | ||||
| 
 | ||||
| private: | ||||
|   std::string model_data; | ||||
| 
 | ||||
| #ifdef QCOM2 | ||||
|   zdl::DlSystem::Runtime_t snpe_runtime; | ||||
| #endif | ||||
| 
 | ||||
|   // snpe model stuff
 | ||||
|   std::unique_ptr<zdl::SNPE::SNPE> snpe; | ||||
|   zdl::DlSystem::UserBufferMap input_map; | ||||
|   zdl::DlSystem::UserBufferMap output_map; | ||||
|   std::unique_ptr<zdl::DlSystem::IUserBuffer> output_buffer; | ||||
| 
 | ||||
|   bool use_tf8; | ||||
|   float *output; | ||||
|   size_t output_size; | ||||
| }; | ||||
| @ -1,9 +0,0 @@ | ||||
| # distutils: language = c++ | ||||
| 
 | ||||
| from libcpp.string cimport string | ||||
| 
 | ||||
| from msgq.visionipc.visionipc cimport cl_context | ||||
| 
 | ||||
| cdef extern from "selfdrive/modeld/runners/snpemodel.h": | ||||
|   cdef cppclass SNPEModel: | ||||
|     SNPEModel(string, float*, size_t, int, bool, cl_context) | ||||
| @ -1,17 +0,0 @@ | ||||
| # distutils: language = c++ | ||||
| # cython: c_string_encoding=ascii, language_level=3 | ||||
| 
 | ||||
| import os | ||||
| from libcpp cimport bool | ||||
| from libcpp.string cimport string | ||||
| 
 | ||||
| from .snpemodel cimport SNPEModel as cppSNPEModel | ||||
| from selfdrive.modeld.models.commonmodel_pyx cimport CLContext | ||||
| from selfdrive.modeld.runners.runmodel_pyx cimport RunModel | ||||
| from selfdrive.modeld.runners.runmodel cimport RunModel as cppRunModel | ||||
| 
 | ||||
| os.environ['ADSP_LIBRARY_PATH'] = "/data/pythonpath/third_party/snpe/dsp/" | ||||
| 
 | ||||
| cdef class SNPEModel(RunModel): | ||||
|   def __cinit__(self, string path, float[:] output, int runtime, bool use_tf8, CLContext context): | ||||
|     self.model = <cppRunModel *> new cppSNPEModel(path, &output[0], len(output), runtime, use_tf8, context.context) | ||||
| @ -1,58 +0,0 @@ | ||||
| #include "selfdrive/modeld/runners/thneedmodel.h" | ||||
| 
 | ||||
| #include <string> | ||||
| 
 | ||||
| #include "common/swaglog.h" | ||||
| 
 | ||||
| ThneedModel::ThneedModel(const std::string path, float *_output, size_t _output_size, int runtime, bool luse_tf8, cl_context context) { | ||||
|   thneed = new Thneed(true, context); | ||||
|   thneed->load(path.c_str()); | ||||
|   thneed->clexec(); | ||||
| 
 | ||||
|   recorded = false; | ||||
|   output = _output; | ||||
| } | ||||
| 
 | ||||
| void* ThneedModel::getCLBuffer(const std::string name) { | ||||
|   int index = -1; | ||||
|   for (int i = 0; i < inputs.size(); i++) { | ||||
|     if (name == inputs[i]->name) { | ||||
|       index = i; | ||||
|       break; | ||||
|     } | ||||
|   } | ||||
| 
 | ||||
|   if (index == -1) { | ||||
|     LOGE("Tried to get CL buffer for input `%s` but no input with this name exists", name.c_str()); | ||||
|     assert(false); | ||||
|   } | ||||
| 
 | ||||
|   if (thneed->input_clmem.size() >= inputs.size()) { | ||||
|     return &thneed->input_clmem[inputs.size() - index - 1]; | ||||
|   } else { | ||||
|     return nullptr; | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| void ThneedModel::execute() { | ||||
|   if (!recorded) { | ||||
|     thneed->record = true; | ||||
|     float *input_buffers[inputs.size()]; | ||||
|     for (int i = 0; i < inputs.size(); i++) { | ||||
|       input_buffers[inputs.size() - i - 1] = inputs[i]->buffer; | ||||
|     } | ||||
| 
 | ||||
|     thneed->copy_inputs(input_buffers); | ||||
|     thneed->clexec(); | ||||
|     thneed->copy_output(output); | ||||
|     thneed->stop(); | ||||
| 
 | ||||
|     recorded = true; | ||||
|   } else { | ||||
|     float *input_buffers[inputs.size()]; | ||||
|     for (int i = 0; i < inputs.size(); i++) { | ||||
|       input_buffers[inputs.size() - i - 1] = inputs[i]->buffer; | ||||
|     } | ||||
|     thneed->execute(input_buffers, output); | ||||
|   } | ||||
| } | ||||
| @ -1,17 +0,0 @@ | ||||
| #pragma once | ||||
| 
 | ||||
| #include <string> | ||||
| 
 | ||||
| #include "selfdrive/modeld/runners/runmodel.h" | ||||
| #include "selfdrive/modeld/thneed/thneed.h" | ||||
| 
 | ||||
| class ThneedModel : public RunModel { | ||||
| public: | ||||
|   ThneedModel(const std::string path, float *_output, size_t _output_size, int runtime, bool use_tf8 = false, cl_context context = NULL); | ||||
|   void *getCLBuffer(const std::string name); | ||||
|   void execute(); | ||||
| private: | ||||
|   Thneed *thneed = NULL; | ||||
|   bool recorded; | ||||
|   float *output; | ||||
| }; | ||||
| @ -1,9 +0,0 @@ | ||||
| # distutils: language = c++ | ||||
| 
 | ||||
| from libcpp.string cimport string | ||||
| 
 | ||||
| from msgq.visionipc.visionipc cimport cl_context | ||||
| 
 | ||||
| cdef extern from "selfdrive/modeld/runners/thneedmodel.h": | ||||
|   cdef cppclass ThneedModel: | ||||
|     ThneedModel(string, float*, size_t, int, bool, cl_context) | ||||
| @ -1,14 +0,0 @@ | ||||
| # distutils: language = c++ | ||||
| # cython: c_string_encoding=ascii, language_level=3 | ||||
| 
 | ||||
| from libcpp cimport bool | ||||
| from libcpp.string cimport string | ||||
| 
 | ||||
| from .thneedmodel cimport ThneedModel as cppThneedModel | ||||
| from selfdrive.modeld.models.commonmodel_pyx cimport CLContext | ||||
| from selfdrive.modeld.runners.runmodel_pyx cimport RunModel | ||||
| from selfdrive.modeld.runners.runmodel cimport RunModel as cppRunModel | ||||
| 
 | ||||
| cdef class ThneedModel(RunModel): | ||||
|   def __cinit__(self, string path, float[:] output, int runtime, bool use_tf8, CLContext context): | ||||
|     self.model = <cppRunModel *> new cppThneedModel(path, &output[0], len(output), runtime, use_tf8, context.context) | ||||
| @ -0,0 +1,8 @@ | ||||
| 
 | ||||
| from tinygrad.tensor import Tensor | ||||
| from tinygrad.helpers import to_mv | ||||
| 
 | ||||
| def qcom_tensor_from_opencl_address(opencl_address, shape, dtype): | ||||
|   cl_buf_desc_ptr = to_mv(opencl_address, 8).cast('Q')[0] | ||||
|   rawbuf_ptr = to_mv(cl_buf_desc_ptr, 0x100).cast('Q')[20] # offset 0xA0 is a raw gpu pointer. | ||||
|   return Tensor.from_blob(rawbuf_ptr, shape, dtype=dtype, device='QCOM') | ||||
| @ -1,8 +0,0 @@ | ||||
| thneed is an SNPE accelerator. I know SNPE is already an accelerator, but sometimes things need to go even faster.. | ||||
| 
 | ||||
| It runs on the local device, and caches a single model run. Then it replays it, but fast. | ||||
| 
 | ||||
| thneed slices through abstraction layers like a fish. | ||||
| 
 | ||||
| You need a thneed. | ||||
| 
 | ||||
| @ -1,154 +0,0 @@ | ||||
| #include <cassert> | ||||
| #include <set> | ||||
| 
 | ||||
| #include "third_party/json11/json11.hpp" | ||||
| #include "common/util.h" | ||||
| #include "common/clutil.h" | ||||
| #include "common/swaglog.h" | ||||
| #include "selfdrive/modeld/thneed/thneed.h" | ||||
| using namespace json11; | ||||
| 
 | ||||
| extern map<cl_program, string> g_program_source; | ||||
| 
 | ||||
| void Thneed::load(const char *filename) { | ||||
|   LOGD("Thneed::load: loading from %s\n", filename); | ||||
| 
 | ||||
|   string buf = util::read_file(filename); | ||||
|   int jsz = *(int *)buf.data(); | ||||
|   string jsonerr; | ||||
|   string jj(buf.data() + sizeof(int), jsz); | ||||
|   Json jdat = Json::parse(jj, jsonerr); | ||||
| 
 | ||||
|   map<cl_mem, cl_mem> real_mem; | ||||
|   real_mem[NULL] = NULL; | ||||
| 
 | ||||
|   int ptr = sizeof(int)+jsz; | ||||
|   for (auto &obj : jdat["objects"].array_items()) { | ||||
|     auto mobj = obj.object_items(); | ||||
|     int sz = mobj["size"].int_value(); | ||||
|     cl_mem clbuf = NULL; | ||||
| 
 | ||||
|     if (mobj["buffer_id"].string_value().size() > 0) { | ||||
|       // image buffer must already be allocated
 | ||||
|       clbuf = real_mem[*(cl_mem*)(mobj["buffer_id"].string_value().data())]; | ||||
|       assert(mobj["needs_load"].bool_value() == false); | ||||
|     } else { | ||||
|       if (mobj["needs_load"].bool_value()) { | ||||
|         clbuf = clCreateBuffer(context, CL_MEM_COPY_HOST_PTR | CL_MEM_READ_WRITE, sz, &buf[ptr], NULL); | ||||
|         if (debug >= 1) printf("loading %p %d @ 0x%X\n", clbuf, sz, ptr); | ||||
|         ptr += sz; | ||||
|       } else { | ||||
|         // TODO: is there a faster way to init zeroed out buffers?
 | ||||
|         void *host_zeros = calloc(sz, 1); | ||||
|         clbuf = clCreateBuffer(context, CL_MEM_COPY_HOST_PTR | CL_MEM_READ_WRITE, sz, host_zeros, NULL); | ||||
|         free(host_zeros); | ||||
|       } | ||||
|     } | ||||
|     assert(clbuf != NULL); | ||||
| 
 | ||||
|     if (mobj["arg_type"] == "image2d_t" || mobj["arg_type"] == "image1d_t") { | ||||
|       cl_image_desc desc = {0}; | ||||
|       desc.image_type = (mobj["arg_type"] == "image2d_t") ? CL_MEM_OBJECT_IMAGE2D : CL_MEM_OBJECT_IMAGE1D_BUFFER; | ||||
|       desc.image_width = mobj["width"].int_value(); | ||||
|       desc.image_height = mobj["height"].int_value(); | ||||
|       desc.image_row_pitch = mobj["row_pitch"].int_value(); | ||||
|       assert(sz == desc.image_height*desc.image_row_pitch); | ||||
| #ifdef QCOM2 | ||||
|       desc.buffer = clbuf; | ||||
| #else | ||||
|       // TODO: we are creating unused buffers on PC
 | ||||
|       clReleaseMemObject(clbuf); | ||||
| #endif | ||||
|       cl_image_format format = {0}; | ||||
|       format.image_channel_order = CL_RGBA; | ||||
|       format.image_channel_data_type = mobj["float32"].bool_value() ? CL_FLOAT : CL_HALF_FLOAT; | ||||
| 
 | ||||
|       cl_int errcode; | ||||
| 
 | ||||
| #ifndef QCOM2 | ||||
|       if (mobj["needs_load"].bool_value()) { | ||||
|         clbuf = clCreateImage(context, CL_MEM_COPY_HOST_PTR | CL_MEM_READ_WRITE, &format, &desc, &buf[ptr-sz], &errcode); | ||||
|       } else { | ||||
|         clbuf = clCreateImage(context, CL_MEM_READ_WRITE, &format, &desc, NULL, &errcode); | ||||
|       } | ||||
| #else | ||||
|       clbuf = clCreateImage(context, CL_MEM_READ_WRITE, &format, &desc, NULL, &errcode); | ||||
| #endif | ||||
|       if (clbuf == NULL) { | ||||
|         LOGE("clError: %s create image %zux%zu rp %zu with buffer %p\n", cl_get_error_string(errcode), | ||||
|              desc.image_width, desc.image_height, desc.image_row_pitch, desc.buffer); | ||||
|       } | ||||
|       assert(clbuf != NULL); | ||||
|     } | ||||
| 
 | ||||
|     real_mem[*(cl_mem*)(mobj["id"].string_value().data())] = clbuf; | ||||
|   } | ||||
| 
 | ||||
|   map<string, cl_program> g_programs; | ||||
|   for (const auto &[name, source] : jdat["programs"].object_items()) { | ||||
|     if (debug >= 1) printf("building %s with size %zu\n", name.c_str(), source.string_value().size()); | ||||
|     g_programs[name] = cl_program_from_source(context, device_id, source.string_value()); | ||||
|   } | ||||
| 
 | ||||
|   for (auto &obj : jdat["inputs"].array_items()) { | ||||
|     auto mobj = obj.object_items(); | ||||
|     int sz = mobj["size"].int_value(); | ||||
|     cl_mem aa = real_mem[*(cl_mem*)(mobj["buffer_id"].string_value().data())]; | ||||
|     input_clmem.push_back(aa); | ||||
|     input_sizes.push_back(sz); | ||||
|     LOGD("Thneed::load: adding input %s with size %d\n", mobj["name"].string_value().data(), sz); | ||||
| 
 | ||||
|     cl_int cl_err; | ||||
|     void *ret = clEnqueueMapBuffer(command_queue, aa, CL_TRUE, CL_MAP_WRITE, 0, sz, 0, NULL, NULL, &cl_err); | ||||
|     if (cl_err != CL_SUCCESS) LOGE("clError: %s map %p %d\n", cl_get_error_string(cl_err), aa, sz); | ||||
|     assert(cl_err == CL_SUCCESS); | ||||
|     inputs.push_back(ret); | ||||
|   } | ||||
| 
 | ||||
|   for (auto &obj : jdat["outputs"].array_items()) { | ||||
|     auto mobj = obj.object_items(); | ||||
|     int sz = mobj["size"].int_value(); | ||||
|     LOGD("Thneed::save: adding output with size %d\n", sz); | ||||
|     // TODO: support multiple outputs
 | ||||
|     output = real_mem[*(cl_mem*)(mobj["buffer_id"].string_value().data())]; | ||||
|     assert(output != NULL); | ||||
|   } | ||||
| 
 | ||||
|   for (auto &obj : jdat["binaries"].array_items()) { | ||||
|     string name = obj["name"].string_value(); | ||||
|     size_t length = obj["length"].int_value(); | ||||
|     if (debug >= 1) printf("binary %s with size %zu\n", name.c_str(), length); | ||||
|     g_programs[name] = cl_program_from_binary(context, device_id, (const uint8_t*)&buf[ptr], length); | ||||
|     ptr += length; | ||||
|   } | ||||
| 
 | ||||
|   for (auto &obj : jdat["kernels"].array_items()) { | ||||
|     auto gws = obj["global_work_size"]; | ||||
|     auto lws = obj["local_work_size"]; | ||||
|     auto kk = shared_ptr<CLQueuedKernel>(new CLQueuedKernel(this)); | ||||
| 
 | ||||
|     kk->name = obj["name"].string_value(); | ||||
|     kk->program = g_programs[kk->name]; | ||||
|     kk->work_dim = obj["work_dim"].int_value(); | ||||
|     for (int i = 0; i < kk->work_dim; i++) { | ||||
|       kk->global_work_size[i] = gws[i].int_value(); | ||||
|       kk->local_work_size[i] = lws[i].int_value(); | ||||
|     } | ||||
|     kk->num_args = obj["num_args"].int_value(); | ||||
|     for (int i = 0; i < kk->num_args; i++) { | ||||
|       string arg = obj["args"].array_items()[i].string_value(); | ||||
|       int arg_size = obj["args_size"].array_items()[i].int_value(); | ||||
|       kk->args_size.push_back(arg_size); | ||||
|       if (arg_size == 8) { | ||||
|         cl_mem val = *(cl_mem*)(arg.data()); | ||||
|         val = real_mem[val]; | ||||
|         kk->args.push_back(string((char*)&val, sizeof(val))); | ||||
|       } else { | ||||
|         kk->args.push_back(arg); | ||||
|       } | ||||
|     } | ||||
|     kq.push_back(kk); | ||||
|   } | ||||
| 
 | ||||
|   clFinish(command_queue); | ||||
| } | ||||
| @ -1,133 +0,0 @@ | ||||
| #pragma once | ||||
| 
 | ||||
| #ifndef __user | ||||
| #define __user __attribute__(()) | ||||
| #endif | ||||
| 
 | ||||
| #include <cstdint> | ||||
| #include <cstdlib> | ||||
| #include <memory> | ||||
| #include <string> | ||||
| #include <vector> | ||||
| 
 | ||||
| #include <CL/cl.h> | ||||
| 
 | ||||
| #include "third_party/linux/include/msm_kgsl.h" | ||||
| 
 | ||||
| using namespace std; | ||||
| 
 | ||||
| cl_int thneed_clSetKernelArg(cl_kernel kernel, cl_uint arg_index, size_t arg_size, const void *arg_value); | ||||
| 
 | ||||
| namespace json11 { | ||||
|   class Json; | ||||
| } | ||||
| class Thneed; | ||||
| 
 | ||||
| class GPUMalloc { | ||||
|   public: | ||||
|     GPUMalloc(int size, int fd); | ||||
|     ~GPUMalloc(); | ||||
|     void *alloc(int size); | ||||
|   private: | ||||
|     uint64_t base; | ||||
|     int remaining; | ||||
| }; | ||||
| 
 | ||||
| class CLQueuedKernel { | ||||
|   public: | ||||
|     CLQueuedKernel(Thneed *lthneed) { thneed = lthneed; } | ||||
|     CLQueuedKernel(Thneed *lthneed, | ||||
|                    cl_kernel _kernel, | ||||
|                    cl_uint _work_dim, | ||||
|                    const size_t *_global_work_size, | ||||
|                    const size_t *_local_work_size); | ||||
|     cl_int exec(); | ||||
|     void debug_print(bool verbose); | ||||
|     int get_arg_num(const char *search_arg_name); | ||||
|     cl_program program; | ||||
|     string name; | ||||
|     cl_uint num_args; | ||||
|     vector<string> arg_names; | ||||
|     vector<string> arg_types; | ||||
|     vector<string> args; | ||||
|     vector<int> args_size; | ||||
|     cl_kernel kernel = NULL; | ||||
|     json11::Json to_json() const; | ||||
| 
 | ||||
|     cl_uint work_dim; | ||||
|     size_t global_work_size[3] = {0}; | ||||
|     size_t local_work_size[3] = {0}; | ||||
|   private: | ||||
|     Thneed *thneed; | ||||
| }; | ||||
| 
 | ||||
| class CachedIoctl { | ||||
|   public: | ||||
|     virtual void exec() {} | ||||
| }; | ||||
| 
 | ||||
| class CachedSync: public CachedIoctl { | ||||
|   public: | ||||
|     CachedSync(Thneed *lthneed, string ldata) { thneed = lthneed; data = ldata; } | ||||
|     void exec(); | ||||
|   private: | ||||
|     Thneed *thneed; | ||||
|     string data; | ||||
| }; | ||||
| 
 | ||||
| class CachedCommand: public CachedIoctl { | ||||
|   public: | ||||
|     CachedCommand(Thneed *lthneed, struct kgsl_gpu_command *cmd); | ||||
|     void exec(); | ||||
|   private: | ||||
|     void disassemble(int cmd_index); | ||||
|     struct kgsl_gpu_command cache; | ||||
|     unique_ptr<kgsl_command_object[]> cmds; | ||||
|     unique_ptr<kgsl_command_object[]> objs; | ||||
|     Thneed *thneed; | ||||
|     vector<shared_ptr<CLQueuedKernel> > kq; | ||||
| }; | ||||
| 
 | ||||
| class Thneed { | ||||
|   public: | ||||
|     Thneed(bool do_clinit=false, cl_context _context = NULL); | ||||
|     void stop(); | ||||
|     void execute(float **finputs, float *foutput, bool slow=false); | ||||
|     void wait(); | ||||
| 
 | ||||
|     vector<cl_mem> input_clmem; | ||||
|     vector<void *> inputs; | ||||
|     vector<size_t> input_sizes; | ||||
|     cl_mem output = NULL; | ||||
| 
 | ||||
|     cl_context context = NULL; | ||||
|     cl_command_queue command_queue; | ||||
|     cl_device_id device_id; | ||||
|     int context_id; | ||||
| 
 | ||||
|     // protected?
 | ||||
|     bool record = false; | ||||
|     int debug; | ||||
|     int timestamp; | ||||
| 
 | ||||
| #ifdef QCOM2 | ||||
|     unique_ptr<GPUMalloc> ram; | ||||
|     vector<unique_ptr<CachedIoctl> > cmds; | ||||
|     int fd; | ||||
| #endif | ||||
| 
 | ||||
|     // all CL kernels
 | ||||
|     void copy_inputs(float **finputs, bool internal=false); | ||||
|     void copy_output(float *foutput); | ||||
|     cl_int clexec(); | ||||
|     vector<shared_ptr<CLQueuedKernel> > kq; | ||||
| 
 | ||||
|     // pending CL kernels
 | ||||
|     vector<shared_ptr<CLQueuedKernel> > ckq; | ||||
| 
 | ||||
|     // loading
 | ||||
|     void load(const char *filename); | ||||
|   private: | ||||
|     void clinit(); | ||||
| }; | ||||
| 
 | ||||
| @ -1,216 +0,0 @@ | ||||
| #include "selfdrive/modeld/thneed/thneed.h" | ||||
| 
 | ||||
| #include <cassert> | ||||
| #include <cstring> | ||||
| #include <map> | ||||
| 
 | ||||
| #include "common/clutil.h" | ||||
| #include "common/timing.h" | ||||
| 
 | ||||
| map<pair<cl_kernel, int>, string> g_args; | ||||
| map<pair<cl_kernel, int>, int> g_args_size; | ||||
| map<cl_program, string> g_program_source; | ||||
| 
 | ||||
| void Thneed::stop() { | ||||
|   //printf("Thneed::stop: recorded %lu commands\n", cmds.size());
 | ||||
|   record = false; | ||||
| } | ||||
| 
 | ||||
| void Thneed::clinit() { | ||||
|   device_id = cl_get_device_id(CL_DEVICE_TYPE_DEFAULT); | ||||
|   if (context == NULL) context = CL_CHECK_ERR(clCreateContext(NULL, 1, &device_id, NULL, NULL, &err)); | ||||
|   //cl_command_queue_properties props[3] = {CL_QUEUE_PROPERTIES, CL_QUEUE_PROFILING_ENABLE, 0};
 | ||||
|   cl_command_queue_properties props[3] = {CL_QUEUE_PROPERTIES, 0, 0}; | ||||
|   command_queue = CL_CHECK_ERR(clCreateCommandQueueWithProperties(context, device_id, props, &err)); | ||||
|   printf("Thneed::clinit done\n"); | ||||
| } | ||||
| 
 | ||||
| cl_int Thneed::clexec() { | ||||
|   if (debug >= 1) printf("Thneed::clexec: running %lu queued kernels\n", kq.size()); | ||||
|   for (auto &k : kq) { | ||||
|     if (record) ckq.push_back(k); | ||||
|     cl_int ret = k->exec(); | ||||
|     assert(ret == CL_SUCCESS); | ||||
|   } | ||||
|   return clFinish(command_queue); | ||||
| } | ||||
| 
 | ||||
| void Thneed::copy_inputs(float **finputs, bool internal) { | ||||
|   for (int idx = 0; idx < inputs.size(); ++idx) { | ||||
|     if (debug >= 1) printf("copying %lu -- %p -> %p (cl %p)\n", input_sizes[idx], finputs[idx], inputs[idx], input_clmem[idx]); | ||||
| 
 | ||||
|     if (internal) { | ||||
|       // if it's internal, using memcpy is fine since the buffer sync is cached in the ioctl layer
 | ||||
|       if (finputs[idx] != NULL) memcpy(inputs[idx], finputs[idx], input_sizes[idx]); | ||||
|     } else { | ||||
|       if (finputs[idx] != NULL) CL_CHECK(clEnqueueWriteBuffer(command_queue, input_clmem[idx], CL_TRUE, 0, input_sizes[idx], finputs[idx], 0, NULL, NULL)); | ||||
|     } | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| void Thneed::copy_output(float *foutput) { | ||||
|   if (output != NULL) { | ||||
|     size_t sz; | ||||
|     clGetMemObjectInfo(output, CL_MEM_SIZE, sizeof(sz), &sz, NULL); | ||||
|     if (debug >= 1) printf("copying %lu for output %p -> %p\n", sz, output, foutput); | ||||
|     CL_CHECK(clEnqueueReadBuffer(command_queue, output, CL_TRUE, 0, sz, foutput, 0, NULL, NULL)); | ||||
|   } else { | ||||
|     printf("CAUTION: model output is NULL, does it have no outputs?\n"); | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| // *********** CLQueuedKernel ***********
 | ||||
| 
 | ||||
| CLQueuedKernel::CLQueuedKernel(Thneed *lthneed, | ||||
|                                cl_kernel _kernel, | ||||
|                                cl_uint _work_dim, | ||||
|                                const size_t *_global_work_size, | ||||
|                                const size_t *_local_work_size) { | ||||
|   thneed = lthneed; | ||||
|   kernel = _kernel; | ||||
|   work_dim = _work_dim; | ||||
|   assert(work_dim <= 3); | ||||
|   for (int i = 0; i < work_dim; i++) { | ||||
|     global_work_size[i] = _global_work_size[i]; | ||||
|     local_work_size[i] = _local_work_size[i]; | ||||
|   } | ||||
| 
 | ||||
|   char _name[0x100]; | ||||
|   clGetKernelInfo(kernel, CL_KERNEL_FUNCTION_NAME, sizeof(_name), _name, NULL); | ||||
|   name = string(_name); | ||||
|   clGetKernelInfo(kernel, CL_KERNEL_NUM_ARGS, sizeof(num_args), &num_args, NULL); | ||||
| 
 | ||||
|   // get args
 | ||||
|   for (int i = 0; i < num_args; i++) { | ||||
|     char arg_name[0x100] = {0}; | ||||
|     clGetKernelArgInfo(kernel, i, CL_KERNEL_ARG_NAME, sizeof(arg_name), arg_name, NULL); | ||||
|     arg_names.push_back(string(arg_name)); | ||||
|     clGetKernelArgInfo(kernel, i, CL_KERNEL_ARG_TYPE_NAME, sizeof(arg_name), arg_name, NULL); | ||||
|     arg_types.push_back(string(arg_name)); | ||||
| 
 | ||||
|     args.push_back(g_args[make_pair(kernel, i)]); | ||||
|     args_size.push_back(g_args_size[make_pair(kernel, i)]); | ||||
|   } | ||||
| 
 | ||||
|   // get program
 | ||||
|   clGetKernelInfo(kernel, CL_KERNEL_PROGRAM, sizeof(program), &program, NULL); | ||||
| } | ||||
| 
 | ||||
| int CLQueuedKernel::get_arg_num(const char *search_arg_name) { | ||||
|   for (int i = 0; i < num_args; i++) { | ||||
|     if (arg_names[i] == search_arg_name) return i; | ||||
|   } | ||||
|   printf("failed to find %s in %s\n", search_arg_name, name.c_str()); | ||||
|   assert(false); | ||||
| } | ||||
| 
 | ||||
| cl_int CLQueuedKernel::exec() { | ||||
|   if (kernel == NULL) { | ||||
|     kernel = clCreateKernel(program, name.c_str(), NULL); | ||||
|     arg_names.clear(); | ||||
|     arg_types.clear(); | ||||
| 
 | ||||
|     for (int j = 0; j < num_args; j++) { | ||||
|       char arg_name[0x100] = {0}; | ||||
|       clGetKernelArgInfo(kernel, j, CL_KERNEL_ARG_NAME, sizeof(arg_name), arg_name, NULL); | ||||
|       arg_names.push_back(string(arg_name)); | ||||
|       clGetKernelArgInfo(kernel, j, CL_KERNEL_ARG_TYPE_NAME, sizeof(arg_name), arg_name, NULL); | ||||
|       arg_types.push_back(string(arg_name)); | ||||
| 
 | ||||
|       cl_int ret; | ||||
|       if (args[j].size() != 0) { | ||||
|         assert(args[j].size() == args_size[j]); | ||||
|         ret = thneed_clSetKernelArg(kernel, j, args[j].size(), args[j].data()); | ||||
|       } else { | ||||
|         ret = thneed_clSetKernelArg(kernel, j, args_size[j], NULL); | ||||
|       } | ||||
|       assert(ret == CL_SUCCESS); | ||||
|     } | ||||
|   } | ||||
| 
 | ||||
|   if (thneed->debug >= 1) { | ||||
|     debug_print(thneed->debug >= 2); | ||||
|   } | ||||
| 
 | ||||
|   return clEnqueueNDRangeKernel(thneed->command_queue, | ||||
|     kernel, work_dim, NULL, global_work_size, local_work_size, 0, NULL, NULL); | ||||
| } | ||||
| 
 | ||||
| void CLQueuedKernel::debug_print(bool verbose) { | ||||
|   printf("%p %56s -- ", kernel, name.c_str()); | ||||
|   for (int i = 0; i < work_dim; i++) { | ||||
|     printf("%4zu ", global_work_size[i]); | ||||
|   } | ||||
|   printf(" -- "); | ||||
|   for (int i = 0; i < work_dim; i++) { | ||||
|     printf("%4zu ", local_work_size[i]); | ||||
|   } | ||||
|   printf("\n"); | ||||
| 
 | ||||
|   if (verbose) { | ||||
|     for (int i = 0; i < num_args; i++) { | ||||
|       string arg = args[i]; | ||||
|       printf("  %s %s", arg_types[i].c_str(), arg_names[i].c_str()); | ||||
|       void *arg_value = (void*)arg.data(); | ||||
|       int arg_size = arg.size(); | ||||
|       if (arg_size == 0) { | ||||
|         printf(" (size) %d", args_size[i]); | ||||
|       } else if (arg_size == 1) { | ||||
|         printf(" = %d", *((char*)arg_value)); | ||||
|       } else if (arg_size == 2) { | ||||
|         printf(" = %d", *((short*)arg_value)); | ||||
|       } else if (arg_size == 4) { | ||||
|         if (arg_types[i] == "float") { | ||||
|           printf(" = %f", *((float*)arg_value)); | ||||
|         } else { | ||||
|           printf(" = %d", *((int*)arg_value)); | ||||
|         } | ||||
|       } else if (arg_size == 8) { | ||||
|         cl_mem val = (cl_mem)(*((uintptr_t*)arg_value)); | ||||
|         printf(" = %p", val); | ||||
|         if (val != NULL) { | ||||
|           cl_mem_object_type obj_type; | ||||
|           clGetMemObjectInfo(val, CL_MEM_TYPE, sizeof(obj_type), &obj_type, NULL); | ||||
|           if (arg_types[i] == "image2d_t" || arg_types[i] == "image1d_t" || obj_type == CL_MEM_OBJECT_IMAGE2D) { | ||||
|             cl_image_format format; | ||||
|             size_t width, height, depth, array_size, row_pitch, slice_pitch; | ||||
|             cl_mem buf; | ||||
|             clGetImageInfo(val, CL_IMAGE_FORMAT, sizeof(format), &format, NULL); | ||||
|             assert(format.image_channel_order == CL_RGBA); | ||||
|             assert(format.image_channel_data_type == CL_HALF_FLOAT || format.image_channel_data_type == CL_FLOAT); | ||||
|             clGetImageInfo(val, CL_IMAGE_WIDTH, sizeof(width), &width, NULL); | ||||
|             clGetImageInfo(val, CL_IMAGE_HEIGHT, sizeof(height), &height, NULL); | ||||
|             clGetImageInfo(val, CL_IMAGE_ROW_PITCH, sizeof(row_pitch), &row_pitch, NULL); | ||||
|             clGetImageInfo(val, CL_IMAGE_DEPTH, sizeof(depth), &depth, NULL); | ||||
|             clGetImageInfo(val, CL_IMAGE_ARRAY_SIZE, sizeof(array_size), &array_size, NULL); | ||||
|             clGetImageInfo(val, CL_IMAGE_SLICE_PITCH, sizeof(slice_pitch), &slice_pitch, NULL); | ||||
|             assert(depth == 0); | ||||
|             assert(array_size == 0); | ||||
|             assert(slice_pitch == 0); | ||||
| 
 | ||||
|             clGetImageInfo(val, CL_IMAGE_BUFFER, sizeof(buf), &buf, NULL); | ||||
|             size_t sz = 0; | ||||
|             if (buf != NULL) clGetMemObjectInfo(buf, CL_MEM_SIZE, sizeof(sz), &sz, NULL); | ||||
|             printf(" image %zu x %zu rp %zu @ %p buffer %zu", width, height, row_pitch, buf, sz); | ||||
|           } else { | ||||
|             size_t sz; | ||||
|             clGetMemObjectInfo(val, CL_MEM_SIZE, sizeof(sz), &sz, NULL); | ||||
|             printf(" buffer %zu", sz); | ||||
|           } | ||||
|         } | ||||
|       } | ||||
|       printf("\n"); | ||||
|     } | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| cl_int thneed_clSetKernelArg(cl_kernel kernel, cl_uint arg_index, size_t arg_size, const void *arg_value) { | ||||
|   g_args_size[make_pair(kernel, arg_index)] = arg_size; | ||||
|   if (arg_value != NULL) { | ||||
|     g_args[make_pair(kernel, arg_index)] = string((char*)arg_value, arg_size); | ||||
|   } else { | ||||
|     g_args[make_pair(kernel, arg_index)] = string(""); | ||||
|   } | ||||
|   cl_int ret = clSetKernelArg(kernel, arg_index, arg_size, arg_value); | ||||
|   return ret; | ||||
| } | ||||
| @ -1,32 +0,0 @@ | ||||
| #include "selfdrive/modeld/thneed/thneed.h" | ||||
| 
 | ||||
| #include <cassert> | ||||
| 
 | ||||
| #include "common/clutil.h" | ||||
| #include "common/timing.h" | ||||
| 
 | ||||
| Thneed::Thneed(bool do_clinit, cl_context _context) { | ||||
|   context = _context; | ||||
|   if (do_clinit) clinit(); | ||||
|   char *thneed_debug_env = getenv("THNEED_DEBUG"); | ||||
|   debug = (thneed_debug_env != NULL) ? atoi(thneed_debug_env) : 0; | ||||
| } | ||||
| 
 | ||||
| void Thneed::execute(float **finputs, float *foutput, bool slow) { | ||||
|   uint64_t tb, te; | ||||
|   if (debug >= 1) tb = nanos_since_boot(); | ||||
| 
 | ||||
|   // ****** copy inputs
 | ||||
|   copy_inputs(finputs); | ||||
| 
 | ||||
|   // ****** run commands
 | ||||
|   clexec(); | ||||
| 
 | ||||
|   // ****** copy outputs
 | ||||
|   copy_output(foutput); | ||||
| 
 | ||||
|   if (debug >= 1) { | ||||
|     te = nanos_since_boot(); | ||||
|     printf("model exec in %lu us\n", (te-tb)/1000); | ||||
|   } | ||||
| } | ||||
| @ -1,258 +0,0 @@ | ||||
| #include "selfdrive/modeld/thneed/thneed.h" | ||||
| 
 | ||||
| #include <dlfcn.h> | ||||
| #include <sys/mman.h> | ||||
| 
 | ||||
| #include <cassert> | ||||
| #include <cerrno> | ||||
| #include <cstring> | ||||
| #include <map> | ||||
| #include <string> | ||||
| 
 | ||||
| #include "common/clutil.h" | ||||
| #include "common/timing.h" | ||||
| 
 | ||||
| Thneed *g_thneed = NULL; | ||||
| int g_fd = -1; | ||||
| 
 | ||||
| void hexdump(uint8_t *d, int len) { | ||||
|   assert((len%4) == 0); | ||||
|   printf("  dumping %p len 0x%x\n", d, len); | ||||
|   for (int i = 0; i < len/4; i++) { | ||||
|     if (i != 0 && (i%0x10) == 0) printf("\n"); | ||||
|     printf("%8x ", d[i]); | ||||
|   } | ||||
|   printf("\n"); | ||||
| } | ||||
| 
 | ||||
| // *********** ioctl interceptor ***********
 | ||||
| 
 | ||||
| extern "C" { | ||||
| 
 | ||||
| int (*my_ioctl)(int filedes, unsigned long request, void *argp) = NULL; | ||||
| #undef ioctl | ||||
| int ioctl(int filedes, unsigned long request, void *argp) { | ||||
|   request &= 0xFFFFFFFF;  // needed on QCOM2
 | ||||
|   if (my_ioctl == NULL) my_ioctl = reinterpret_cast<decltype(my_ioctl)>(dlsym(RTLD_NEXT, "ioctl")); | ||||
|   Thneed *thneed = g_thneed; | ||||
| 
 | ||||
|   // save the fd
 | ||||
|   if (request == IOCTL_KGSL_GPUOBJ_ALLOC) g_fd = filedes; | ||||
| 
 | ||||
|   // note that this runs always, even without a thneed object
 | ||||
|   if (request == IOCTL_KGSL_DRAWCTXT_CREATE) { | ||||
|     struct kgsl_drawctxt_create *create = (struct kgsl_drawctxt_create *)argp; | ||||
|     create->flags &= ~KGSL_CONTEXT_PRIORITY_MASK; | ||||
|     create->flags |= 6 << KGSL_CONTEXT_PRIORITY_SHIFT;   // priority from 1-15, 1 is max priority
 | ||||
|     printf("IOCTL_KGSL_DRAWCTXT_CREATE: creating context with flags 0x%x\n", create->flags); | ||||
|   } | ||||
| 
 | ||||
|   if (thneed != NULL) { | ||||
|     if (request == IOCTL_KGSL_GPU_COMMAND) { | ||||
|       struct kgsl_gpu_command *cmd = (struct kgsl_gpu_command *)argp; | ||||
|       if (thneed->record) { | ||||
|         thneed->timestamp = cmd->timestamp; | ||||
|         thneed->context_id = cmd->context_id; | ||||
|         thneed->cmds.push_back(unique_ptr<CachedCommand>(new CachedCommand(thneed, cmd))); | ||||
|       } | ||||
|       if (thneed->debug >= 1) { | ||||
|         printf("IOCTL_KGSL_GPU_COMMAND(%2zu): flags: 0x%lx    context_id: %u  timestamp: %u  numcmds: %d  numobjs: %d\n", | ||||
|             thneed->cmds.size(), | ||||
|             cmd->flags, | ||||
|             cmd->context_id, cmd->timestamp, cmd->numcmds, cmd->numobjs); | ||||
|       } | ||||
|     } else if (request == IOCTL_KGSL_GPUOBJ_SYNC) { | ||||
|       struct kgsl_gpuobj_sync *cmd = (struct kgsl_gpuobj_sync *)argp; | ||||
|       struct kgsl_gpuobj_sync_obj *objs = (struct kgsl_gpuobj_sync_obj *)(cmd->objs); | ||||
| 
 | ||||
|       if (thneed->debug >= 2) { | ||||
|         printf("IOCTL_KGSL_GPUOBJ_SYNC count:%d ", cmd->count); | ||||
|         for (int i = 0; i < cmd->count; i++) { | ||||
|           printf(" -- offset:0x%lx len:0x%lx id:%d op:%d  ", objs[i].offset, objs[i].length, objs[i].id, objs[i].op); | ||||
|         } | ||||
|         printf("\n"); | ||||
|       } | ||||
| 
 | ||||
|       if (thneed->record) { | ||||
|         thneed->cmds.push_back(unique_ptr<CachedSync>(new | ||||
|               CachedSync(thneed, string((char *)objs, sizeof(struct kgsl_gpuobj_sync_obj)*cmd->count)))); | ||||
|       } | ||||
|     } else if (request == IOCTL_KGSL_DEVICE_WAITTIMESTAMP_CTXTID) { | ||||
|       struct kgsl_device_waittimestamp_ctxtid *cmd = (struct kgsl_device_waittimestamp_ctxtid *)argp; | ||||
|       if (thneed->debug >= 1) { | ||||
|         printf("IOCTL_KGSL_DEVICE_WAITTIMESTAMP_CTXTID: context_id: %d  timestamp: %d  timeout: %d\n", | ||||
|             cmd->context_id, cmd->timestamp, cmd->timeout); | ||||
|       } | ||||
|     } else if (request == IOCTL_KGSL_SETPROPERTY) { | ||||
|       if (thneed->debug >= 1) { | ||||
|         struct kgsl_device_getproperty *prop = (struct kgsl_device_getproperty *)argp; | ||||
|         printf("IOCTL_KGSL_SETPROPERTY: 0x%x sizebytes:%zu\n", prop->type, prop->sizebytes); | ||||
|         if (thneed->debug >= 2) { | ||||
|           hexdump((uint8_t *)prop->value, prop->sizebytes); | ||||
|           if (prop->type == KGSL_PROP_PWR_CONSTRAINT) { | ||||
|             struct kgsl_device_constraint *constraint = (struct kgsl_device_constraint *)prop->value; | ||||
|             hexdump((uint8_t *)constraint->data, constraint->size); | ||||
|           } | ||||
|         } | ||||
|       } | ||||
|     } else if (request == IOCTL_KGSL_DRAWCTXT_CREATE || request == IOCTL_KGSL_DRAWCTXT_DESTROY) { | ||||
|       // this happens
 | ||||
|     } else if (request == IOCTL_KGSL_GPUOBJ_ALLOC || request == IOCTL_KGSL_GPUOBJ_FREE) { | ||||
|       // this happens
 | ||||
|     } else { | ||||
|       if (thneed->debug >= 1) { | ||||
|         printf("other ioctl %lx\n", request); | ||||
|       } | ||||
|     } | ||||
|   } | ||||
| 
 | ||||
|   int ret = my_ioctl(filedes, request, argp); | ||||
|   // NOTE: This error message goes into stdout and messes up pyenv
 | ||||
|   // if (ret != 0) printf("ioctl returned %d with errno %d\n", ret, errno);
 | ||||
|   return ret; | ||||
| } | ||||
| 
 | ||||
| } | ||||
| 
 | ||||
| // *********** GPUMalloc ***********
 | ||||
| 
 | ||||
| GPUMalloc::GPUMalloc(int size, int fd) { | ||||
|   struct kgsl_gpuobj_alloc alloc; | ||||
|   memset(&alloc, 0, sizeof(alloc)); | ||||
|   alloc.size = size; | ||||
|   alloc.flags = 0x10000a00; | ||||
|   ioctl(fd, IOCTL_KGSL_GPUOBJ_ALLOC, &alloc); | ||||
|   void *addr = mmap64(NULL, alloc.mmapsize, 0x3, 0x1, fd, alloc.id*0x1000); | ||||
|   assert(addr != MAP_FAILED); | ||||
| 
 | ||||
|   base = (uint64_t)addr; | ||||
|   remaining = size; | ||||
| } | ||||
| 
 | ||||
| GPUMalloc::~GPUMalloc() { | ||||
|   // TODO: free the GPU malloced area
 | ||||
| } | ||||
| 
 | ||||
| void *GPUMalloc::alloc(int size) { | ||||
|   void *ret = (void*)base; | ||||
|   size = (size+0xff) & (~0xFF); | ||||
|   assert(size <= remaining); | ||||
|   remaining -= size; | ||||
|   base += size; | ||||
|   return ret; | ||||
| } | ||||
| 
 | ||||
| // *********** CachedSync, at the ioctl layer ***********
 | ||||
| 
 | ||||
| void CachedSync::exec() { | ||||
|   struct kgsl_gpuobj_sync cmd; | ||||
| 
 | ||||
|   cmd.objs = (uint64_t)data.data(); | ||||
|   cmd.obj_len = data.length(); | ||||
|   cmd.count = data.length() / sizeof(struct kgsl_gpuobj_sync_obj); | ||||
| 
 | ||||
|   int ret = ioctl(thneed->fd, IOCTL_KGSL_GPUOBJ_SYNC, &cmd); | ||||
|   assert(ret == 0); | ||||
| } | ||||
| 
 | ||||
| // *********** CachedCommand, at the ioctl layer ***********
 | ||||
| 
 | ||||
| CachedCommand::CachedCommand(Thneed *lthneed, struct kgsl_gpu_command *cmd) { | ||||
|   thneed = lthneed; | ||||
|   assert(cmd->numsyncs == 0); | ||||
| 
 | ||||
|   memcpy(&cache, cmd, sizeof(cache)); | ||||
| 
 | ||||
|   if (cmd->numcmds > 0) { | ||||
|     cmds = make_unique<struct kgsl_command_object[]>(cmd->numcmds); | ||||
|     memcpy(cmds.get(), (void *)cmd->cmdlist, sizeof(struct kgsl_command_object)*cmd->numcmds); | ||||
|     cache.cmdlist = (uint64_t)cmds.get(); | ||||
|     for (int i = 0; i < cmd->numcmds; i++) { | ||||
|       void *nn = thneed->ram->alloc(cmds[i].size); | ||||
|       memcpy(nn, (void*)cmds[i].gpuaddr, cmds[i].size); | ||||
|       cmds[i].gpuaddr = (uint64_t)nn; | ||||
|     } | ||||
|   } | ||||
| 
 | ||||
|   if (cmd->numobjs > 0) { | ||||
|     objs = make_unique<struct kgsl_command_object[]>(cmd->numobjs); | ||||
|     memcpy(objs.get(), (void *)cmd->objlist, sizeof(struct kgsl_command_object)*cmd->numobjs); | ||||
|     cache.objlist = (uint64_t)objs.get(); | ||||
|     for (int i = 0; i < cmd->numobjs; i++) { | ||||
|       void *nn = thneed->ram->alloc(objs[i].size); | ||||
|       memset(nn, 0, objs[i].size); | ||||
|       objs[i].gpuaddr = (uint64_t)nn; | ||||
|     } | ||||
|   } | ||||
| 
 | ||||
|   kq = thneed->ckq; | ||||
|   thneed->ckq.clear(); | ||||
| } | ||||
| 
 | ||||
| void CachedCommand::exec() { | ||||
|   cache.timestamp = ++thneed->timestamp; | ||||
|   int ret = ioctl(thneed->fd, IOCTL_KGSL_GPU_COMMAND, &cache); | ||||
| 
 | ||||
|   if (thneed->debug >= 1) printf("CachedCommand::exec got %d\n", ret); | ||||
| 
 | ||||
|   if (thneed->debug >= 2) { | ||||
|     for (auto &it : kq) { | ||||
|       it->debug_print(false); | ||||
|     } | ||||
|   } | ||||
| 
 | ||||
|   assert(ret == 0); | ||||
| } | ||||
| 
 | ||||
| // *********** Thneed ***********
 | ||||
| 
 | ||||
| Thneed::Thneed(bool do_clinit, cl_context _context) { | ||||
|   // TODO: QCOM2 actually requires a different context
 | ||||
|   //context = _context;
 | ||||
|   if (do_clinit) clinit(); | ||||
|   assert(g_fd != -1); | ||||
|   fd = g_fd; | ||||
|   ram = make_unique<GPUMalloc>(0x80000, fd); | ||||
|   timestamp = -1; | ||||
|   g_thneed = this; | ||||
|   char *thneed_debug_env = getenv("THNEED_DEBUG"); | ||||
|   debug = (thneed_debug_env != NULL) ? atoi(thneed_debug_env) : 0; | ||||
| } | ||||
| 
 | ||||
| void Thneed::wait() { | ||||
|   struct kgsl_device_waittimestamp_ctxtid wait; | ||||
|   wait.context_id = context_id; | ||||
|   wait.timestamp = timestamp; | ||||
|   wait.timeout = -1; | ||||
| 
 | ||||
|   uint64_t tb = nanos_since_boot(); | ||||
|   int wret = ioctl(fd, IOCTL_KGSL_DEVICE_WAITTIMESTAMP_CTXTID, &wait); | ||||
|   uint64_t te = nanos_since_boot(); | ||||
| 
 | ||||
|   if (debug >= 1) printf("wait %d after %lu us\n", wret, (te-tb)/1000); | ||||
| } | ||||
| 
 | ||||
| void Thneed::execute(float **finputs, float *foutput, bool slow) { | ||||
|   uint64_t tb, te; | ||||
|   if (debug >= 1) tb = nanos_since_boot(); | ||||
| 
 | ||||
|   // ****** copy inputs
 | ||||
|   copy_inputs(finputs, true); | ||||
| 
 | ||||
|   // ****** run commands
 | ||||
|   int i = 0; | ||||
|   for (auto &it : cmds) { | ||||
|     ++i; | ||||
|     if (debug >= 1) printf("run %2d @ %7lu us: ", i, (nanos_since_boot()-tb)/1000); | ||||
|     it->exec(); | ||||
|     if ((i == cmds.size()) || slow) wait(); | ||||
|   } | ||||
| 
 | ||||
|   // ****** copy outputs
 | ||||
|   copy_output(foutput); | ||||
| 
 | ||||
|   if (debug >= 1) { | ||||
|     te = nanos_since_boot(); | ||||
|     printf("model exec in %lu us\n", (te-tb)/1000); | ||||
|   } | ||||
| } | ||||
| @ -1 +1 @@ | ||||
| Subproject commit 9dda6d260db0255750bacff61e3cee1e580567e1 | ||||
| Subproject commit 480e5e7a1292bf2f84e18edffd06a985c4b48e65 | ||||
					Loading…
					
					
				
		Reference in new issue