Live kf whitespace cleanup, fix covariance phone accel

pull/1086/head
Willem Melching 5 years ago
parent 6823971a11
commit 1de5d84a06
  1. 134
      selfdrive/locationd/kalman/models/live_kf.py

@ -8,7 +8,7 @@ from selfdrive.locationd.kalman.helpers.sympy_helpers import (euler_rotate,
quat_matrix_r, quat_matrix_r,
quat_rotate) quat_rotate)
from selfdrive.swaglog import cloudlog from selfdrive.swaglog import cloudlog
#from laika.constants import EARTH_GM
EARTH_GM = 3.986005e14 # m^3/s^2 (gravitational constant * mass of earth) EARTH_GM = 3.986005e14 # m^3/s^2 (gravitational constant * mass of earth)
@ -44,7 +44,6 @@ class LiveKalman():
0, 0, 0, 0, 0, 0,
0, 0, 0]) 0, 0, 0])
# state covariance # state covariance
initial_P_diag = np.array([10000**2, 10000**2, 10000**2, initial_P_diag = np.array([10000**2, 10000**2, 10000**2,
10**2, 10**2, 10**2, 10**2, 10**2, 10**2,
@ -60,10 +59,10 @@ class LiveKalman():
0.0**2, 0.0**2, 0.0**2, 0.0**2, 0.0**2, 0.0**2,
0.0**2, 0.0**2, 0.0**2, 0.0**2, 0.0**2, 0.0**2,
0.1**2, 0.1**2, 0.1**2, 0.1**2, 0.1**2, 0.1**2,
(0.005/100)**2, (0.005/100)**2, (0.005/100)**2, (0.005 / 100)**2, (0.005 / 100)**2, (0.005 / 100)**2,
(0.02/100)**2, (0.02 / 100)**2,
3**2, 3**2, 3**2, 3**2, 3**2, 3**2,
(0.05/60)**2, (0.05/60)**2, (0.05/60)**2]) (0.05 / 60)**2, (0.05 / 60)**2, (0.05 / 60)**2])
@staticmethod @staticmethod
def generate_code(): def generate_code():
@ -73,16 +72,16 @@ class LiveKalman():
state_sym = sp.MatrixSymbol('state', dim_state, 1) state_sym = sp.MatrixSymbol('state', dim_state, 1)
state = sp.Matrix(state_sym) state = sp.Matrix(state_sym)
x,y,z = state[States.ECEF_POS,:] x, y, z = state[States.ECEF_POS, :]
q = state[States.ECEF_ORIENTATION,:] q = state[States.ECEF_ORIENTATION, :]
v = state[States.ECEF_VELOCITY,:] v = state[States.ECEF_VELOCITY, :]
vx, vy, vz = v vx, vy, vz = v
omega = state[States.ANGULAR_VELOCITY,:] omega = state[States.ANGULAR_VELOCITY, :]
vroll, vpitch, vyaw = omega vroll, vpitch, vyaw = omega
roll_bias, pitch_bias, yaw_bias = state[States.GYRO_BIAS,:] roll_bias, pitch_bias, yaw_bias = state[States.GYRO_BIAS, :]
odo_scale = state[16,:] odo_scale = state[16, :]
acceleration = state[States.ACCELERATION,:] acceleration = state[States.ACCELERATION, :]
imu_angles= state[States.IMU_OFFSET,:] imu_angles = state[States.IMU_OFFSET, :]
dt = sp.Symbol('dt') dt = sp.Symbol('dt')
@ -93,104 +92,97 @@ class LiveKalman():
# A New Quaternion-Based Kalman Filter for # A New Quaternion-Based Kalman Filter for
# Real-Time Attitude Estimation Using the Two-Step # Real-Time Attitude Estimation Using the Two-Step
# Geometrically-Intuitive Correction Algorithm # Geometrically-Intuitive Correction Algorithm
A = 0.5*sp.Matrix([[0, -vroll, -vpitch, -vyaw], A = 0.5 * sp.Matrix([[0, -vroll, -vpitch, -vyaw],
[vroll, 0, vyaw, -vpitch], [vroll, 0, vyaw, -vpitch],
[vpitch, -vyaw, 0, vroll], [vpitch, -vyaw, 0, vroll],
[vyaw, vpitch, -vroll, 0]]) [vyaw, vpitch, -vroll, 0]])
q_dot = A * q q_dot = A * q
# Time derivative of the state as a function of state # Time derivative of the state as a function of state
state_dot = sp.Matrix(np.zeros((dim_state, 1))) state_dot = sp.Matrix(np.zeros((dim_state, 1)))
state_dot[States.ECEF_POS,:] = v state_dot[States.ECEF_POS, :] = v
state_dot[States.ECEF_ORIENTATION,:] = q_dot state_dot[States.ECEF_ORIENTATION, :] = q_dot
state_dot[States.ECEF_VELOCITY,0] = quat_rot * acceleration state_dot[States.ECEF_VELOCITY, 0] = quat_rot * acceleration
# Basic descretization, 1st order intergrator # Basic descretization, 1st order intergrator
# Can be pretty bad if dt is big # Can be pretty bad if dt is big
f_sym = state + dt*state_dot f_sym = state + dt * state_dot
state_err_sym = sp.MatrixSymbol('state_err',dim_state_err,1) state_err_sym = sp.MatrixSymbol('state_err', dim_state_err, 1)
state_err = sp.Matrix(state_err_sym) state_err = sp.Matrix(state_err_sym)
quat_err = state_err[States.ECEF_ORIENTATION_ERR,:] quat_err = state_err[States.ECEF_ORIENTATION_ERR, :]
v_err = state_err[States.ECEF_VELOCITY_ERR,:] v_err = state_err[States.ECEF_VELOCITY_ERR, :]
omega_err = state_err[States.ANGULAR_VELOCITY_ERR,:] omega_err = state_err[States.ANGULAR_VELOCITY_ERR, :]
acceleration_err = state_err[States.ACCELERATION_ERR,:] acceleration_err = state_err[States.ACCELERATION_ERR, :]
# Time derivative of the state error as a function of state error and state # Time derivative of the state error as a function of state error and state
quat_err_matrix = euler_rotate(quat_err[0], quat_err[1], quat_err[2]) quat_err_matrix = euler_rotate(quat_err[0], quat_err[1], quat_err[2])
q_err_dot = quat_err_matrix * quat_rot * (omega + omega_err) q_err_dot = quat_err_matrix * quat_rot * (omega + omega_err)
state_err_dot = sp.Matrix(np.zeros((dim_state_err, 1))) state_err_dot = sp.Matrix(np.zeros((dim_state_err, 1)))
state_err_dot[States.ECEF_POS_ERR,:] = v_err state_err_dot[States.ECEF_POS_ERR, :] = v_err
state_err_dot[States.ECEF_ORIENTATION_ERR,:] = q_err_dot state_err_dot[States.ECEF_ORIENTATION_ERR, :] = q_err_dot
state_err_dot[States.ECEF_VELOCITY_ERR,:] = quat_err_matrix * quat_rot * (acceleration + acceleration_err) state_err_dot[States.ECEF_VELOCITY_ERR, :] = quat_err_matrix * quat_rot * (acceleration + acceleration_err)
f_err_sym = state_err + dt*state_err_dot f_err_sym = state_err + dt * state_err_dot
# Observation matrix modifier # Observation matrix modifier
H_mod_sym = sp.Matrix(np.zeros((dim_state, dim_state_err))) H_mod_sym = sp.Matrix(np.zeros((dim_state, dim_state_err)))
H_mod_sym[0:3, 0:3] = np.eye(3) H_mod_sym[0:3, 0:3] = np.eye(3)
H_mod_sym[3:7,3:6] = 0.5*quat_matrix_r(state[3:7])[:,1:] H_mod_sym[3:7, 3:6] = 0.5 * quat_matrix_r(state[3:7])[:, 1:]
H_mod_sym[7:, 6:] = np.eye(dim_state-7) H_mod_sym[7:, 6:] = np.eye(dim_state - 7)
# these error functions are defined so that say there # these error functions are defined so that say there
# is a nominal x and true x: # is a nominal x and true x:
# true x = err_function(nominal x, delta x) # true x = err_function(nominal x, delta x)
# delta x = inv_err_function(nominal x, true x) # delta x = inv_err_function(nominal x, true x)
nom_x = sp.MatrixSymbol('nom_x',dim_state,1) nom_x = sp.MatrixSymbol('nom_x', dim_state, 1)
true_x = sp.MatrixSymbol('true_x',dim_state,1) true_x = sp.MatrixSymbol('true_x', dim_state, 1)
delta_x = sp.MatrixSymbol('delta_x',dim_state_err,1) delta_x = sp.MatrixSymbol('delta_x', dim_state_err, 1)
err_function_sym = sp.Matrix(np.zeros((dim_state,1))) err_function_sym = sp.Matrix(np.zeros((dim_state, 1)))
delta_quat = sp.Matrix(np.ones((4))) delta_quat = sp.Matrix(np.ones((4)))
delta_quat[1:,:] = sp.Matrix(0.5*delta_x[3:6,:]) delta_quat[1:, :] = sp.Matrix(0.5 * delta_x[3:6, :])
err_function_sym[0:3,:] = sp.Matrix(nom_x[0:3,:] + delta_x[0:3,:]) err_function_sym[0:3, :] = sp.Matrix(nom_x[0:3, :] + delta_x[0:3, :])
err_function_sym[3:7,0] = quat_matrix_r(nom_x[3:7,0])*delta_quat err_function_sym[3:7, 0] = quat_matrix_r(nom_x[3:7, 0]) * delta_quat
err_function_sym[7:,:] = sp.Matrix(nom_x[7:,:] + delta_x[6:,:]) err_function_sym[7:, :] = sp.Matrix(nom_x[7:, :] + delta_x[6:, :])
inv_err_function_sym = sp.Matrix(np.zeros((dim_state_err,1))) inv_err_function_sym = sp.Matrix(np.zeros((dim_state_err, 1)))
inv_err_function_sym[0:3,0] = sp.Matrix(-nom_x[0:3,0] + true_x[0:3,0]) inv_err_function_sym[0:3, 0] = sp.Matrix(-nom_x[0:3, 0] + true_x[0:3, 0])
delta_quat = quat_matrix_r(nom_x[3:7,0]).T*true_x[3:7,0] delta_quat = quat_matrix_r(nom_x[3:7, 0]).T * true_x[3:7, 0]
inv_err_function_sym[3:6,0] = sp.Matrix(2*delta_quat[1:]) inv_err_function_sym[3:6, 0] = sp.Matrix(2 * delta_quat[1:])
inv_err_function_sym[6:,0] = sp.Matrix(-nom_x[7:,0] + true_x[7:,0]) inv_err_function_sym[6:, 0] = sp.Matrix(-nom_x[7:, 0] + true_x[7:, 0])
eskf_params = [[err_function_sym, nom_x, delta_x], eskf_params = [[err_function_sym, nom_x, delta_x],
[inv_err_function_sym, nom_x, true_x], [inv_err_function_sym, nom_x, true_x],
H_mod_sym, f_err_sym, state_err_sym] H_mod_sym, f_err_sym, state_err_sym]
# #
# Observation functions # Observation functions
# #
imu_rot = euler_rotate(*imu_angles) imu_rot = euler_rotate(*imu_angles)
h_gyro_sym = imu_rot*sp.Matrix([vroll + roll_bias, h_gyro_sym = imu_rot * sp.Matrix([vroll + roll_bias,
vpitch + pitch_bias, vpitch + pitch_bias,
vyaw + yaw_bias]) vyaw + yaw_bias])
pos = sp.Matrix([x, y, z]) pos = sp.Matrix([x, y, z])
gravity = quat_rot.T * ((EARTH_GM/((x**2 + y**2 + z**2)**(3.0/2.0)))*pos) gravity = quat_rot.T * ((EARTH_GM / ((x**2 + y**2 + z**2)**(3.0 / 2.0))) * pos)
h_acc_sym = imu_rot*(gravity + acceleration) h_acc_sym = imu_rot * (gravity + acceleration)
h_phone_rot_sym = sp.Matrix([vroll, h_phone_rot_sym = sp.Matrix([vroll, vpitch, vyaw])
vpitch,
vyaw]) speed = sp.sqrt(vx**2 + vy**2 + vz**2)
speed = vx**2 + vy**2 + vz**2 h_speed_sym = sp.Matrix([speed * odo_scale])
h_speed_sym = sp.Matrix([sp.sqrt(speed)*odo_scale])
h_pos_sym = sp.Matrix([x, y, z]) h_pos_sym = sp.Matrix([x, y, z])
h_imu_frame_sym = sp.Matrix(imu_angles) h_imu_frame_sym = sp.Matrix(imu_angles)
h_relative_motion = sp.Matrix(quat_rot.T * v) h_relative_motion = sp.Matrix(quat_rot.T * v)
obs_eqs = [[h_speed_sym, ObservationKind.ODOMETRIC_SPEED, None], obs_eqs = [[h_speed_sym, ObservationKind.ODOMETRIC_SPEED, None],
[h_gyro_sym, ObservationKind.PHONE_GYRO, None], [h_gyro_sym, ObservationKind.PHONE_GYRO, None],
[h_phone_rot_sym, ObservationKind.NO_ROT, None], [h_phone_rot_sym, ObservationKind.NO_ROT, None],
[h_acc_sym, ObservationKind.PHONE_ACCEL, None], [h_acc_sym, ObservationKind.PHONE_ACCEL, None],
[h_pos_sym, ObservationKind.ECEF_POS, None], [h_pos_sym, ObservationKind.ECEF_POS, None],
[h_relative_motion, ObservationKind.CAMERA_ODO_TRANSLATION, None], [h_relative_motion, ObservationKind.CAMERA_ODO_TRANSLATION, None],
[h_phone_rot_sym, ObservationKind.CAMERA_ODO_ROTATION, None], [h_phone_rot_sym, ObservationKind.CAMERA_ODO_ROTATION, None],
[h_imu_frame_sym, ObservationKind.IMU_FRAME, None]] [h_imu_frame_sym, ObservationKind.IMU_FRAME, None]]
gen_code(name, f_sym, dt, state_sym, obs_eqs, dim_state, dim_state_err, eskf_params) gen_code(name, f_sym, dt, state_sym, obs_eqs, dim_state, dim_state_err, eskf_params)
@ -200,7 +192,7 @@ class LiveKalman():
self.obs_noise = {ObservationKind.ODOMETRIC_SPEED: np.atleast_2d(0.2**2), self.obs_noise = {ObservationKind.ODOMETRIC_SPEED: np.atleast_2d(0.2**2),
ObservationKind.PHONE_GYRO: np.diag([0.025**2, 0.025**2, 0.025**2]), ObservationKind.PHONE_GYRO: np.diag([0.025**2, 0.025**2, 0.025**2]),
ObservationKind.PHONE_ACCEL: np.diag([.5**2, .5**2, .5*2]), ObservationKind.PHONE_ACCEL: np.diag([.5**2, .5**2, .5**2]),
ObservationKind.CAMERA_ODO_ROTATION: np.diag([0.05**2, 0.05**2, 0.05**2]), ObservationKind.CAMERA_ODO_ROTATION: np.diag([0.05**2, 0.05**2, 0.05**2]),
ObservationKind.IMU_FRAME: np.diag([0.05**2, 0.05**2, 0.05**2]), ObservationKind.IMU_FRAME: np.diag([0.05**2, 0.05**2, 0.05**2]),
ObservationKind.NO_ROT: np.diag([0.00025**2, 0.00025**2, 0.00025**2]), ObservationKind.NO_ROT: np.diag([0.00025**2, 0.00025**2, 0.00025**2]),

Loading…
Cancel
Save