Move lag estimator for lagd

pull/34975/head
Kacper Rączy 3 weeks ago
parent db51e93889
commit 1e01555a39
  1. 0
      selfdrive/locationd/estimators/__init__.py
  2. 303
      selfdrive/locationd/estimators/lateral_lag.py
  3. 38
      selfdrive/locationd/helpers.py
  4. 264
      selfdrive/locationd/lagd.py

@ -1,303 +0,0 @@
import numpy as np
import capnp
from collections import deque
from functools import partial, cache
import cereal.messaging as messaging
from cereal import log, car
from openpilot.selfdrive.locationd.helpers import PoseCalibrator, Pose
BLOCK_SIZE = 100
BLOCK_NUM = 50
BLOCK_NUM_NEEDED = 5
MOVING_WINDOW_SEC = 300.0
MIN_OKAY_WINDOW_SEC = 30.0
MIN_RECOVERY_BUFFER_SEC = 2.0
MIN_VEGO = 15.0
MIN_ABS_YAW_RATE = np.radians(1.0)
MIN_NCC = 0.95
MAX_LAG = 1.0
@cache
def fft_next_good_size(n: int) -> int:
"""
smallest composite of 2, 3, 5, 7, 11 that is >= n
inspired by pocketfft
"""
if n <= 6:
return n
best, f2 = 2 * n, 1
while f2 < best:
f23 = f2
while f23 < best:
f235 = f23
while f235 < best:
f2357 = f235
while f2357 < best:
f235711 = f2357
while f235711 < best:
best = f235711 if f235711 >= n else best
f235711 *= 11
f2357 *= 7
f235 *= 5
f23 *= 3
f2 *= 2
return best
def parabolic_peak_interp(R, max_index):
if max_index == 0 or max_index == len(R) - 1:
return max_index
y_m1, y_0, y_p1 = R[max_index - 1], R[max_index], R[max_index + 1]
offset = 0.5 * (y_p1 - y_m1) / (2 * y_0 - y_p1 - y_m1)
return max_index + offset
def masked_normalized_cross_correlation(expected_sig: np.ndarray, actual_sig: np.ndarray, mask: np.ndarray, n: int):
"""
References:
D. Padfield. "Masked FFT registration". In Proc. Computer Vision and
Pattern Recognition, pp. 2918-2925 (2010).
:DOI:`10.1109/CVPR.2010.5540032`
"""
eps = np.finfo(np.float64).eps
expected_sig = np.asarray(expected_sig, dtype=np.float64)
actual_sig = np.asarray(actual_sig, dtype=np.float64)
expected_sig[~mask] = 0.0
actual_sig[~mask] = 0.0
rotated_expected_sig = expected_sig[::-1]
rotated_mask = mask[::-1]
fft = partial(np.fft.fft, n=n)
actual_sig_fft = fft(actual_sig)
rotated_expected_sig_fft = fft(rotated_expected_sig)
actual_mask_fft = fft(mask.astype(np.float64))
rotated_mask_fft = fft(rotated_mask.astype(np.float64))
number_overlap_masked_samples = np.fft.ifft(rotated_mask_fft * actual_mask_fft).real
number_overlap_masked_samples[:] = np.round(number_overlap_masked_samples)
number_overlap_masked_samples[:] = np.fmax(number_overlap_masked_samples, eps)
masked_correlated_actual_fft = np.fft.ifft(rotated_mask_fft * actual_sig_fft).real
masked_correlated_expected_fft = np.fft.ifft(actual_mask_fft * rotated_expected_sig_fft).real
numerator = np.fft.ifft(rotated_expected_sig_fft * actual_sig_fft).real
numerator -= masked_correlated_actual_fft * masked_correlated_expected_fft / number_overlap_masked_samples
actual_squared_fft = fft(actual_sig ** 2)
actual_sig_denom = np.fft.ifft(rotated_mask_fft * actual_squared_fft).real
actual_sig_denom -= masked_correlated_actual_fft ** 2 / number_overlap_masked_samples
actual_sig_denom[:] = np.fmax(actual_sig_denom, 0.0)
rotated_expected_squared_fft = fft(rotated_expected_sig ** 2)
expected_sig_denom = np.fft.ifft(actual_mask_fft * rotated_expected_squared_fft).real
expected_sig_denom -= masked_correlated_expected_fft ** 2 / number_overlap_masked_samples
expected_sig_denom[:] = np.fmax(expected_sig_denom, 0.0)
denom = np.sqrt(actual_sig_denom * expected_sig_denom)
# zero-out samples with very small denominators
tol = 1e3 * eps * np.max(np.abs(denom), keepdims=True)
nonzero_indices = denom > tol
ncc = np.zeros_like(denom, dtype=np.float64)
ncc[nonzero_indices] = numerator[nonzero_indices] / denom[nonzero_indices]
np.clip(ncc, -1, 1, out=ncc)
return ncc
class Points:
def __init__(self, num_points: int):
self.times = deque[float](maxlen=num_points)
self.okay = deque[bool](maxlen=num_points)
self.desired = deque[float](maxlen=num_points)
self.actual = deque[float](maxlen=num_points)
@property
def num_points(self):
return len(self.desired)
@property
def num_okay(self):
return np.count_nonzero(self.okay)
def update(self, t: float, desired: float, actual: float, okay: bool):
self.times.append(t)
self.okay.append(okay)
self.desired.append(desired)
self.actual.append(actual)
def get(self) -> tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
return np.array(self.times), np.array(self.desired), np.array(self.actual), np.array(self.okay)
class BlockAverage:
def __init__(self, num_blocks: int, block_size: int, valid_blocks: int, initial_value: float):
self.num_blocks = num_blocks
self.block_size = block_size
self.block_idx = valid_blocks % block_size
self.idx = 0
self.values = np.tile(initial_value, (num_blocks, 1))
self.valid_blocks = valid_blocks
def update(self, value: float):
self.values[self.block_idx] = (self.idx * self.values[self.block_idx] + (self.block_size - self.idx) * value) / self.block_size
self.idx = (self.idx + 1) % self.block_size
if self.idx == 0:
self.block_idx = (self.block_idx + 1) % self.num_blocks
self.valid_blocks = min(self.valid_blocks + 1, self.num_blocks)
def get(self) -> float | None:
valid_block_idx = [i for i in range(self.valid_blocks) if i != self.block_idx]
if not valid_block_idx:
return None
return float(np.mean(self.values[valid_block_idx], axis=0).item())
class LateralLagEstimator:
inputs = {"carControl", "carState", "controlsState", "liveCalibration", "livePose"}
def __init__(self, CP: car.CarParams, dt: float,
block_count: int = BLOCK_NUM, min_valid_block_count: int = BLOCK_NUM_NEEDED, block_size: int = BLOCK_SIZE,
window_sec: float = MOVING_WINDOW_SEC, okay_window_sec: float = MIN_OKAY_WINDOW_SEC, min_recovery_buffer_sec: float = MIN_RECOVERY_BUFFER_SEC,
min_vego: float = MIN_VEGO, min_yr: float = MIN_ABS_YAW_RATE, min_ncc: float = MIN_NCC):
self.dt = dt
self.window_sec = window_sec
self.okay_window_sec = okay_window_sec
self.min_recovery_buffer_sec = min_recovery_buffer_sec
self.initial_lag = CP.steerActuatorDelay + 0.2
self.block_size = block_size
self.block_count = block_count
self.min_valid_block_count = min_valid_block_count
self.min_vego = min_vego
self.min_yr = min_yr
self.min_ncc = min_ncc
self.t = 0.0
self.lat_active = False
self.steering_pressed = False
self.steering_saturated = False
self.desired_curvature = 0.0
self.v_ego = 0.0
self.yaw_rate = 0.0
self.last_lat_inactive_t = 0.0
self.last_steering_pressed_t = 0.0
self.last_steering_saturated_t = 0.0
self.last_estimate_t = 0.0
self.calibrator = PoseCalibrator()
self.reset(self.initial_lag, 0)
def reset(self, initial_lag: float, valid_blocks: int):
window_len = int(self.window_sec / self.dt)
self.points = Points(window_len)
self.block_avg = BlockAverage(self.block_count, self.block_size, valid_blocks, initial_lag)
def get_msg(self, valid: bool, debug: bool = False) -> capnp._DynamicStructBuilder:
msg = messaging.new_message('liveDelay')
msg.valid = valid
liveDelay = msg.liveDelay
estimated_lag = self.block_avg.get()
liveDelay.lateralDelayEstimate = estimated_lag or self.initial_lag
if self.block_avg.valid_blocks >= self.min_valid_block_count and estimated_lag is not None:
liveDelay.status = log.LiveDelayData.Status.estimated
liveDelay.lateralDelay = estimated_lag
else:
liveDelay.status = log.LiveDelayData.Status.unestimated
liveDelay.lateralDelay = self.initial_lag
liveDelay.validBlocks = self.block_avg.valid_blocks
if debug:
liveDelay.points = self.block_avg.values.flatten().tolist()
return msg
def handle_log(self, t: float, which: str, msg: capnp._DynamicStructReader):
if which == "carControl":
self.lat_active = msg.latActive
elif which == "carState":
self.steering_pressed = msg.steeringPressed
self.v_ego = msg.vEgo
elif which == "controlsState":
self.steering_saturated = getattr(msg.lateralControlState, msg.lateralControlState.which()).saturated
self.desired_curvature = msg.desiredCurvature
elif which == "liveCalibration":
self.calibrator.feed_live_calib(msg)
elif which == "livePose":
device_pose = Pose.from_live_pose(msg)
calibrated_pose = self.calibrator.build_calibrated_pose(device_pose)
self.yaw_rate = calibrated_pose.angular_velocity.z
self.t = t
def points_enough(self):
return self.points.num_points >= int(self.okay_window_sec / self.dt)
def points_valid(self):
return self.points.num_okay >= int(self.okay_window_sec / self.dt)
def update_points(self):
if not self.lat_active:
self.last_lat_inactive_t = self.t
if self.steering_pressed:
self.last_steering_pressed_t = self.t
if self.steering_saturated:
self.last_steering_saturated_t = self.t
la_desired = self.desired_curvature * self.v_ego * self.v_ego
la_actual_pose = self.yaw_rate * self.v_ego
fast = self.v_ego > self.min_vego
turning = np.abs(self.yaw_rate) >= self.min_yr
has_recovered = all( # wait for recovery after !lat_active, steering_pressed, steering_saturated
self.t - last_t >= self.min_recovery_buffer_sec
for last_t in [self.last_lat_inactive_t, self.last_steering_pressed_t, self.last_steering_saturated_t]
)
okay = self.lat_active and not self.steering_pressed and not self.steering_saturated and fast and turning and has_recovered
self.points.update(self.t, la_desired, la_actual_pose, okay)
def update_estimate(self):
if not self.points_enough():
return
times, desired, actual, okay = self.points.get()
# check if there are any new valid data points since the last update
is_valid = self.points_valid()
if self.last_estimate_t != 0 and times[0] <= self.last_estimate_t:
new_values_start_idx = next(-i for i, t in enumerate(reversed(times)) if t <= self.last_estimate_t)
is_valid = is_valid and not (new_values_start_idx == 0 or not np.any(okay[new_values_start_idx:]))
delay, corr = self.actuator_delay(desired, actual, okay, self.dt, MAX_LAG)
if corr < self.min_ncc or not is_valid:
return
self.block_avg.update(delay)
self.last_estimate_t = self.t
def actuator_delay(self, expected_sig: np.ndarray, actual_sig: np.ndarray, mask: np.ndarray, dt: float, max_lag: float) -> tuple[float, float]:
assert len(expected_sig) == len(actual_sig)
max_lag_samples = int(max_lag / dt)
padded_size = fft_next_good_size(len(expected_sig) + max_lag_samples)
ncc = masked_normalized_cross_correlation(expected_sig, actual_sig, mask, padded_size)
# only consider lags from 0 to max_lag
roi_ncc = ncc[len(expected_sig) - 1: len(expected_sig) - 1 + max_lag_samples]
max_corr_index = np.argmax(roi_ncc)
corr = roi_ncc[max_corr_index]
lag = parabolic_peak_interp(roi_ncc, max_corr_index) * dt
return lag, corr

@ -1,10 +1,48 @@
import numpy as np import numpy as np
from typing import Any from typing import Any
from functools import cache
from cereal import log from cereal import log
from openpilot.common.transformations.orientation import rot_from_euler, euler_from_rot from openpilot.common.transformations.orientation import rot_from_euler, euler_from_rot
@cache
def fft_next_good_size(n: int) -> int:
"""
smallest composite of 2, 3, 5, 7, 11 that is >= n
inspired by pocketfft
"""
if n <= 6:
return n
best, f2 = 2 * n, 1
while f2 < best:
f23 = f2
while f23 < best:
f235 = f23
while f235 < best:
f2357 = f235
while f2357 < best:
f235711 = f2357
while f235711 < best:
best = f235711 if f235711 >= n else best
f235711 *= 11
f2357 *= 7
f235 *= 5
f23 *= 3
f2 *= 2
return best
def parabolic_peak_interp(R, max_index):
if max_index == 0 or max_index == len(R) - 1:
return max_index
y_m1, y_0, y_p1 = R[max_index - 1], R[max_index], R[max_index + 1]
offset = 0.5 * (y_p1 - y_m1) / (2 * y_0 - y_p1 - y_m1)
return max_index + offset
def rotate_cov(rot_matrix, cov_in): def rotate_cov(rot_matrix, cov_in):
return rot_matrix @ cov_in @ rot_matrix.T return rot_matrix @ cov_in @ rot_matrix.T

@ -1,5 +1,9 @@
#!/usr/bin/env python3 #!/usr/bin/env python3
import os import os
import numpy as np
import capnp
from collections import deque
from functools import partial
import cereal.messaging as messaging import cereal.messaging as messaging
from cereal import car, log from cereal import car, log
@ -7,7 +11,265 @@ from cereal.services import SERVICE_LIST
from openpilot.common.params import Params from openpilot.common.params import Params
from openpilot.common.realtime import config_realtime_process from openpilot.common.realtime import config_realtime_process
from openpilot.common.swaglog import cloudlog from openpilot.common.swaglog import cloudlog
from openpilot.selfdrive.locationd.estimators.lateral_lag import LateralLagEstimator from openpilot.selfdrive.locationd.helpers import PoseCalibrator, Pose, fft_next_good_size, parabolic_peak_interp
BLOCK_SIZE = 100
BLOCK_NUM = 50
BLOCK_NUM_NEEDED = 5
MOVING_WINDOW_SEC = 300.0
MIN_OKAY_WINDOW_SEC = 30.0
MIN_RECOVERY_BUFFER_SEC = 2.0
MIN_VEGO = 15.0
MIN_ABS_YAW_RATE = np.radians(1.0)
MIN_NCC = 0.95
MAX_LAG = 1.0
def masked_normalized_cross_correlation(expected_sig: np.ndarray, actual_sig: np.ndarray, mask: np.ndarray, n: int):
"""
References:
D. Padfield. "Masked FFT registration". In Proc. Computer Vision and
Pattern Recognition, pp. 2918-2925 (2010).
:DOI:`10.1109/CVPR.2010.5540032`
"""
eps = np.finfo(np.float64).eps
expected_sig = np.asarray(expected_sig, dtype=np.float64)
actual_sig = np.asarray(actual_sig, dtype=np.float64)
expected_sig[~mask] = 0.0
actual_sig[~mask] = 0.0
rotated_expected_sig = expected_sig[::-1]
rotated_mask = mask[::-1]
fft = partial(np.fft.fft, n=n)
actual_sig_fft = fft(actual_sig)
rotated_expected_sig_fft = fft(rotated_expected_sig)
actual_mask_fft = fft(mask.astype(np.float64))
rotated_mask_fft = fft(rotated_mask.astype(np.float64))
number_overlap_masked_samples = np.fft.ifft(rotated_mask_fft * actual_mask_fft).real
number_overlap_masked_samples[:] = np.round(number_overlap_masked_samples)
number_overlap_masked_samples[:] = np.fmax(number_overlap_masked_samples, eps)
masked_correlated_actual_fft = np.fft.ifft(rotated_mask_fft * actual_sig_fft).real
masked_correlated_expected_fft = np.fft.ifft(actual_mask_fft * rotated_expected_sig_fft).real
numerator = np.fft.ifft(rotated_expected_sig_fft * actual_sig_fft).real
numerator -= masked_correlated_actual_fft * masked_correlated_expected_fft / number_overlap_masked_samples
actual_squared_fft = fft(actual_sig ** 2)
actual_sig_denom = np.fft.ifft(rotated_mask_fft * actual_squared_fft).real
actual_sig_denom -= masked_correlated_actual_fft ** 2 / number_overlap_masked_samples
actual_sig_denom[:] = np.fmax(actual_sig_denom, 0.0)
rotated_expected_squared_fft = fft(rotated_expected_sig ** 2)
expected_sig_denom = np.fft.ifft(actual_mask_fft * rotated_expected_squared_fft).real
expected_sig_denom -= masked_correlated_expected_fft ** 2 / number_overlap_masked_samples
expected_sig_denom[:] = np.fmax(expected_sig_denom, 0.0)
denom = np.sqrt(actual_sig_denom * expected_sig_denom)
# zero-out samples with very small denominators
tol = 1e3 * eps * np.max(np.abs(denom), keepdims=True)
nonzero_indices = denom > tol
ncc = np.zeros_like(denom, dtype=np.float64)
ncc[nonzero_indices] = numerator[nonzero_indices] / denom[nonzero_indices]
np.clip(ncc, -1, 1, out=ncc)
return ncc
class Points:
def __init__(self, num_points: int):
self.times = deque[float](maxlen=num_points)
self.okay = deque[bool](maxlen=num_points)
self.desired = deque[float](maxlen=num_points)
self.actual = deque[float](maxlen=num_points)
@property
def num_points(self):
return len(self.desired)
@property
def num_okay(self):
return np.count_nonzero(self.okay)
def update(self, t: float, desired: float, actual: float, okay: bool):
self.times.append(t)
self.okay.append(okay)
self.desired.append(desired)
self.actual.append(actual)
def get(self) -> tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
return np.array(self.times), np.array(self.desired), np.array(self.actual), np.array(self.okay)
class BlockAverage:
def __init__(self, num_blocks: int, block_size: int, valid_blocks: int, initial_value: float):
self.num_blocks = num_blocks
self.block_size = block_size
self.block_idx = valid_blocks % block_size
self.idx = 0
self.values = np.tile(initial_value, (num_blocks, 1))
self.valid_blocks = valid_blocks
def update(self, value: float):
self.values[self.block_idx] = (self.idx * self.values[self.block_idx] + (self.block_size - self.idx) * value) / self.block_size
self.idx = (self.idx + 1) % self.block_size
if self.idx == 0:
self.block_idx = (self.block_idx + 1) % self.num_blocks
self.valid_blocks = min(self.valid_blocks + 1, self.num_blocks)
def get(self) -> float | None:
valid_block_idx = [i for i in range(self.valid_blocks) if i != self.block_idx]
if not valid_block_idx:
return None
return float(np.mean(self.values[valid_block_idx], axis=0).item())
class LateralLagEstimator:
inputs = {"carControl", "carState", "controlsState", "liveCalibration", "livePose"}
def __init__(self, CP: car.CarParams, dt: float,
block_count: int = BLOCK_NUM, min_valid_block_count: int = BLOCK_NUM_NEEDED, block_size: int = BLOCK_SIZE,
window_sec: float = MOVING_WINDOW_SEC, okay_window_sec: float = MIN_OKAY_WINDOW_SEC, min_recovery_buffer_sec: float = MIN_RECOVERY_BUFFER_SEC,
min_vego: float = MIN_VEGO, min_yr: float = MIN_ABS_YAW_RATE, min_ncc: float = MIN_NCC):
self.dt = dt
self.window_sec = window_sec
self.okay_window_sec = okay_window_sec
self.min_recovery_buffer_sec = min_recovery_buffer_sec
self.initial_lag = CP.steerActuatorDelay + 0.2
self.block_size = block_size
self.block_count = block_count
self.min_valid_block_count = min_valid_block_count
self.min_vego = min_vego
self.min_yr = min_yr
self.min_ncc = min_ncc
self.t = 0.0
self.lat_active = False
self.steering_pressed = False
self.steering_saturated = False
self.desired_curvature = 0.0
self.v_ego = 0.0
self.yaw_rate = 0.0
self.last_lat_inactive_t = 0.0
self.last_steering_pressed_t = 0.0
self.last_steering_saturated_t = 0.0
self.last_estimate_t = 0.0
self.calibrator = PoseCalibrator()
self.reset(self.initial_lag, 0)
def reset(self, initial_lag: float, valid_blocks: int):
window_len = int(self.window_sec / self.dt)
self.points = Points(window_len)
self.block_avg = BlockAverage(self.block_count, self.block_size, valid_blocks, initial_lag)
def get_msg(self, valid: bool, debug: bool = False) -> capnp._DynamicStructBuilder:
msg = messaging.new_message('liveDelay')
msg.valid = valid
liveDelay = msg.liveDelay
estimated_lag = self.block_avg.get()
liveDelay.lateralDelayEstimate = estimated_lag or self.initial_lag
if self.block_avg.valid_blocks >= self.min_valid_block_count and estimated_lag is not None:
liveDelay.status = log.LiveDelayData.Status.estimated
liveDelay.lateralDelay = estimated_lag
else:
liveDelay.status = log.LiveDelayData.Status.unestimated
liveDelay.lateralDelay = self.initial_lag
liveDelay.validBlocks = self.block_avg.valid_blocks
if debug:
liveDelay.points = self.block_avg.values.flatten().tolist()
return msg
def handle_log(self, t: float, which: str, msg: capnp._DynamicStructReader):
if which == "carControl":
self.lat_active = msg.latActive
elif which == "carState":
self.steering_pressed = msg.steeringPressed
self.v_ego = msg.vEgo
elif which == "controlsState":
self.steering_saturated = getattr(msg.lateralControlState, msg.lateralControlState.which()).saturated
self.desired_curvature = msg.desiredCurvature
elif which == "liveCalibration":
self.calibrator.feed_live_calib(msg)
elif which == "livePose":
device_pose = Pose.from_live_pose(msg)
calibrated_pose = self.calibrator.build_calibrated_pose(device_pose)
self.yaw_rate = calibrated_pose.angular_velocity.z
self.t = t
def points_enough(self):
return self.points.num_points >= int(self.okay_window_sec / self.dt)
def points_valid(self):
return self.points.num_okay >= int(self.okay_window_sec / self.dt)
def update_points(self):
if not self.lat_active:
self.last_lat_inactive_t = self.t
if self.steering_pressed:
self.last_steering_pressed_t = self.t
if self.steering_saturated:
self.last_steering_saturated_t = self.t
la_desired = self.desired_curvature * self.v_ego * self.v_ego
la_actual_pose = self.yaw_rate * self.v_ego
fast = self.v_ego > self.min_vego
turning = np.abs(self.yaw_rate) >= self.min_yr
has_recovered = all( # wait for recovery after !lat_active, steering_pressed, steering_saturated
self.t - last_t >= self.min_recovery_buffer_sec
for last_t in [self.last_lat_inactive_t, self.last_steering_pressed_t, self.last_steering_saturated_t]
)
okay = self.lat_active and not self.steering_pressed and not self.steering_saturated and fast and turning and has_recovered
self.points.update(self.t, la_desired, la_actual_pose, okay)
def update_estimate(self):
if not self.points_enough():
return
times, desired, actual, okay = self.points.get()
# check if there are any new valid data points since the last update
is_valid = self.points_valid()
if self.last_estimate_t != 0 and times[0] <= self.last_estimate_t:
new_values_start_idx = next(-i for i, t in enumerate(reversed(times)) if t <= self.last_estimate_t)
is_valid = is_valid and not (new_values_start_idx == 0 or not np.any(okay[new_values_start_idx:]))
delay, corr = self.actuator_delay(desired, actual, okay, self.dt, MAX_LAG)
if corr < self.min_ncc or not is_valid:
return
self.block_avg.update(delay)
self.last_estimate_t = self.t
def actuator_delay(self, expected_sig: np.ndarray, actual_sig: np.ndarray, mask: np.ndarray, dt: float, max_lag: float) -> tuple[float, float]:
assert len(expected_sig) == len(actual_sig)
max_lag_samples = int(max_lag / dt)
padded_size = fft_next_good_size(len(expected_sig) + max_lag_samples)
ncc = masked_normalized_cross_correlation(expected_sig, actual_sig, mask, padded_size)
# only consider lags from 0 to max_lag
roi_ncc = ncc[len(expected_sig) - 1: len(expected_sig) - 1 + max_lag_samples]
max_corr_index = np.argmax(roi_ncc)
corr = roi_ncc[max_corr_index]
lag = parabolic_peak_interp(roi_ncc, max_corr_index) * dt
return lag, corr
def retrieve_initial_lag(params_reader: Params, CP: car.CarParams): def retrieve_initial_lag(params_reader: Params, CP: car.CarParams):

Loading…
Cancel
Save