parent
db51e93889
commit
1e01555a39
4 changed files with 301 additions and 304 deletions
@ -1,303 +0,0 @@ |
|||||||
import numpy as np |
|
||||||
import capnp |
|
||||||
from collections import deque |
|
||||||
from functools import partial, cache |
|
||||||
|
|
||||||
import cereal.messaging as messaging |
|
||||||
from cereal import log, car |
|
||||||
from openpilot.selfdrive.locationd.helpers import PoseCalibrator, Pose |
|
||||||
|
|
||||||
BLOCK_SIZE = 100 |
|
||||||
BLOCK_NUM = 50 |
|
||||||
BLOCK_NUM_NEEDED = 5 |
|
||||||
MOVING_WINDOW_SEC = 300.0 |
|
||||||
MIN_OKAY_WINDOW_SEC = 30.0 |
|
||||||
MIN_RECOVERY_BUFFER_SEC = 2.0 |
|
||||||
MIN_VEGO = 15.0 |
|
||||||
MIN_ABS_YAW_RATE = np.radians(1.0) |
|
||||||
MIN_NCC = 0.95 |
|
||||||
MAX_LAG = 1.0 |
|
||||||
|
|
||||||
|
|
||||||
@cache |
|
||||||
def fft_next_good_size(n: int) -> int: |
|
||||||
""" |
|
||||||
smallest composite of 2, 3, 5, 7, 11 that is >= n |
|
||||||
inspired by pocketfft |
|
||||||
""" |
|
||||||
if n <= 6: |
|
||||||
return n |
|
||||||
best, f2 = 2 * n, 1 |
|
||||||
while f2 < best: |
|
||||||
f23 = f2 |
|
||||||
while f23 < best: |
|
||||||
f235 = f23 |
|
||||||
while f235 < best: |
|
||||||
f2357 = f235 |
|
||||||
while f2357 < best: |
|
||||||
f235711 = f2357 |
|
||||||
while f235711 < best: |
|
||||||
best = f235711 if f235711 >= n else best |
|
||||||
f235711 *= 11 |
|
||||||
f2357 *= 7 |
|
||||||
f235 *= 5 |
|
||||||
f23 *= 3 |
|
||||||
f2 *= 2 |
|
||||||
return best |
|
||||||
|
|
||||||
|
|
||||||
def parabolic_peak_interp(R, max_index): |
|
||||||
if max_index == 0 or max_index == len(R) - 1: |
|
||||||
return max_index |
|
||||||
|
|
||||||
y_m1, y_0, y_p1 = R[max_index - 1], R[max_index], R[max_index + 1] |
|
||||||
offset = 0.5 * (y_p1 - y_m1) / (2 * y_0 - y_p1 - y_m1) |
|
||||||
|
|
||||||
return max_index + offset |
|
||||||
|
|
||||||
|
|
||||||
def masked_normalized_cross_correlation(expected_sig: np.ndarray, actual_sig: np.ndarray, mask: np.ndarray, n: int): |
|
||||||
""" |
|
||||||
References: |
|
||||||
D. Padfield. "Masked FFT registration". In Proc. Computer Vision and |
|
||||||
Pattern Recognition, pp. 2918-2925 (2010). |
|
||||||
:DOI:`10.1109/CVPR.2010.5540032` |
|
||||||
""" |
|
||||||
|
|
||||||
eps = np.finfo(np.float64).eps |
|
||||||
expected_sig = np.asarray(expected_sig, dtype=np.float64) |
|
||||||
actual_sig = np.asarray(actual_sig, dtype=np.float64) |
|
||||||
|
|
||||||
expected_sig[~mask] = 0.0 |
|
||||||
actual_sig[~mask] = 0.0 |
|
||||||
|
|
||||||
rotated_expected_sig = expected_sig[::-1] |
|
||||||
rotated_mask = mask[::-1] |
|
||||||
|
|
||||||
fft = partial(np.fft.fft, n=n) |
|
||||||
|
|
||||||
actual_sig_fft = fft(actual_sig) |
|
||||||
rotated_expected_sig_fft = fft(rotated_expected_sig) |
|
||||||
actual_mask_fft = fft(mask.astype(np.float64)) |
|
||||||
rotated_mask_fft = fft(rotated_mask.astype(np.float64)) |
|
||||||
|
|
||||||
number_overlap_masked_samples = np.fft.ifft(rotated_mask_fft * actual_mask_fft).real |
|
||||||
number_overlap_masked_samples[:] = np.round(number_overlap_masked_samples) |
|
||||||
number_overlap_masked_samples[:] = np.fmax(number_overlap_masked_samples, eps) |
|
||||||
masked_correlated_actual_fft = np.fft.ifft(rotated_mask_fft * actual_sig_fft).real |
|
||||||
masked_correlated_expected_fft = np.fft.ifft(actual_mask_fft * rotated_expected_sig_fft).real |
|
||||||
|
|
||||||
numerator = np.fft.ifft(rotated_expected_sig_fft * actual_sig_fft).real |
|
||||||
numerator -= masked_correlated_actual_fft * masked_correlated_expected_fft / number_overlap_masked_samples |
|
||||||
|
|
||||||
actual_squared_fft = fft(actual_sig ** 2) |
|
||||||
actual_sig_denom = np.fft.ifft(rotated_mask_fft * actual_squared_fft).real |
|
||||||
actual_sig_denom -= masked_correlated_actual_fft ** 2 / number_overlap_masked_samples |
|
||||||
actual_sig_denom[:] = np.fmax(actual_sig_denom, 0.0) |
|
||||||
|
|
||||||
rotated_expected_squared_fft = fft(rotated_expected_sig ** 2) |
|
||||||
expected_sig_denom = np.fft.ifft(actual_mask_fft * rotated_expected_squared_fft).real |
|
||||||
expected_sig_denom -= masked_correlated_expected_fft ** 2 / number_overlap_masked_samples |
|
||||||
expected_sig_denom[:] = np.fmax(expected_sig_denom, 0.0) |
|
||||||
|
|
||||||
denom = np.sqrt(actual_sig_denom * expected_sig_denom) |
|
||||||
|
|
||||||
# zero-out samples with very small denominators |
|
||||||
tol = 1e3 * eps * np.max(np.abs(denom), keepdims=True) |
|
||||||
nonzero_indices = denom > tol |
|
||||||
|
|
||||||
ncc = np.zeros_like(denom, dtype=np.float64) |
|
||||||
ncc[nonzero_indices] = numerator[nonzero_indices] / denom[nonzero_indices] |
|
||||||
np.clip(ncc, -1, 1, out=ncc) |
|
||||||
|
|
||||||
return ncc |
|
||||||
|
|
||||||
|
|
||||||
class Points: |
|
||||||
def __init__(self, num_points: int): |
|
||||||
self.times = deque[float](maxlen=num_points) |
|
||||||
self.okay = deque[bool](maxlen=num_points) |
|
||||||
self.desired = deque[float](maxlen=num_points) |
|
||||||
self.actual = deque[float](maxlen=num_points) |
|
||||||
|
|
||||||
@property |
|
||||||
def num_points(self): |
|
||||||
return len(self.desired) |
|
||||||
|
|
||||||
@property |
|
||||||
def num_okay(self): |
|
||||||
return np.count_nonzero(self.okay) |
|
||||||
|
|
||||||
def update(self, t: float, desired: float, actual: float, okay: bool): |
|
||||||
self.times.append(t) |
|
||||||
self.okay.append(okay) |
|
||||||
self.desired.append(desired) |
|
||||||
self.actual.append(actual) |
|
||||||
|
|
||||||
def get(self) -> tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]: |
|
||||||
return np.array(self.times), np.array(self.desired), np.array(self.actual), np.array(self.okay) |
|
||||||
|
|
||||||
|
|
||||||
class BlockAverage: |
|
||||||
def __init__(self, num_blocks: int, block_size: int, valid_blocks: int, initial_value: float): |
|
||||||
self.num_blocks = num_blocks |
|
||||||
self.block_size = block_size |
|
||||||
self.block_idx = valid_blocks % block_size |
|
||||||
self.idx = 0 |
|
||||||
|
|
||||||
self.values = np.tile(initial_value, (num_blocks, 1)) |
|
||||||
self.valid_blocks = valid_blocks |
|
||||||
|
|
||||||
def update(self, value: float): |
|
||||||
self.values[self.block_idx] = (self.idx * self.values[self.block_idx] + (self.block_size - self.idx) * value) / self.block_size |
|
||||||
self.idx = (self.idx + 1) % self.block_size |
|
||||||
if self.idx == 0: |
|
||||||
self.block_idx = (self.block_idx + 1) % self.num_blocks |
|
||||||
self.valid_blocks = min(self.valid_blocks + 1, self.num_blocks) |
|
||||||
|
|
||||||
def get(self) -> float | None: |
|
||||||
valid_block_idx = [i for i in range(self.valid_blocks) if i != self.block_idx] |
|
||||||
if not valid_block_idx: |
|
||||||
return None |
|
||||||
return float(np.mean(self.values[valid_block_idx], axis=0).item()) |
|
||||||
|
|
||||||
|
|
||||||
class LateralLagEstimator: |
|
||||||
inputs = {"carControl", "carState", "controlsState", "liveCalibration", "livePose"} |
|
||||||
|
|
||||||
def __init__(self, CP: car.CarParams, dt: float, |
|
||||||
block_count: int = BLOCK_NUM, min_valid_block_count: int = BLOCK_NUM_NEEDED, block_size: int = BLOCK_SIZE, |
|
||||||
window_sec: float = MOVING_WINDOW_SEC, okay_window_sec: float = MIN_OKAY_WINDOW_SEC, min_recovery_buffer_sec: float = MIN_RECOVERY_BUFFER_SEC, |
|
||||||
min_vego: float = MIN_VEGO, min_yr: float = MIN_ABS_YAW_RATE, min_ncc: float = MIN_NCC): |
|
||||||
self.dt = dt |
|
||||||
self.window_sec = window_sec |
|
||||||
self.okay_window_sec = okay_window_sec |
|
||||||
self.min_recovery_buffer_sec = min_recovery_buffer_sec |
|
||||||
self.initial_lag = CP.steerActuatorDelay + 0.2 |
|
||||||
self.block_size = block_size |
|
||||||
self.block_count = block_count |
|
||||||
self.min_valid_block_count = min_valid_block_count |
|
||||||
self.min_vego = min_vego |
|
||||||
self.min_yr = min_yr |
|
||||||
self.min_ncc = min_ncc |
|
||||||
|
|
||||||
self.t = 0.0 |
|
||||||
self.lat_active = False |
|
||||||
self.steering_pressed = False |
|
||||||
self.steering_saturated = False |
|
||||||
self.desired_curvature = 0.0 |
|
||||||
self.v_ego = 0.0 |
|
||||||
self.yaw_rate = 0.0 |
|
||||||
|
|
||||||
self.last_lat_inactive_t = 0.0 |
|
||||||
self.last_steering_pressed_t = 0.0 |
|
||||||
self.last_steering_saturated_t = 0.0 |
|
||||||
self.last_estimate_t = 0.0 |
|
||||||
|
|
||||||
self.calibrator = PoseCalibrator() |
|
||||||
|
|
||||||
self.reset(self.initial_lag, 0) |
|
||||||
|
|
||||||
def reset(self, initial_lag: float, valid_blocks: int): |
|
||||||
window_len = int(self.window_sec / self.dt) |
|
||||||
self.points = Points(window_len) |
|
||||||
self.block_avg = BlockAverage(self.block_count, self.block_size, valid_blocks, initial_lag) |
|
||||||
|
|
||||||
def get_msg(self, valid: bool, debug: bool = False) -> capnp._DynamicStructBuilder: |
|
||||||
msg = messaging.new_message('liveDelay') |
|
||||||
|
|
||||||
msg.valid = valid |
|
||||||
|
|
||||||
liveDelay = msg.liveDelay |
|
||||||
|
|
||||||
estimated_lag = self.block_avg.get() |
|
||||||
liveDelay.lateralDelayEstimate = estimated_lag or self.initial_lag |
|
||||||
if self.block_avg.valid_blocks >= self.min_valid_block_count and estimated_lag is not None: |
|
||||||
liveDelay.status = log.LiveDelayData.Status.estimated |
|
||||||
liveDelay.lateralDelay = estimated_lag |
|
||||||
else: |
|
||||||
liveDelay.status = log.LiveDelayData.Status.unestimated |
|
||||||
liveDelay.lateralDelay = self.initial_lag |
|
||||||
liveDelay.validBlocks = self.block_avg.valid_blocks |
|
||||||
if debug: |
|
||||||
liveDelay.points = self.block_avg.values.flatten().tolist() |
|
||||||
|
|
||||||
return msg |
|
||||||
|
|
||||||
def handle_log(self, t: float, which: str, msg: capnp._DynamicStructReader): |
|
||||||
if which == "carControl": |
|
||||||
self.lat_active = msg.latActive |
|
||||||
elif which == "carState": |
|
||||||
self.steering_pressed = msg.steeringPressed |
|
||||||
self.v_ego = msg.vEgo |
|
||||||
elif which == "controlsState": |
|
||||||
self.steering_saturated = getattr(msg.lateralControlState, msg.lateralControlState.which()).saturated |
|
||||||
self.desired_curvature = msg.desiredCurvature |
|
||||||
elif which == "liveCalibration": |
|
||||||
self.calibrator.feed_live_calib(msg) |
|
||||||
elif which == "livePose": |
|
||||||
device_pose = Pose.from_live_pose(msg) |
|
||||||
calibrated_pose = self.calibrator.build_calibrated_pose(device_pose) |
|
||||||
self.yaw_rate = calibrated_pose.angular_velocity.z |
|
||||||
self.t = t |
|
||||||
|
|
||||||
def points_enough(self): |
|
||||||
return self.points.num_points >= int(self.okay_window_sec / self.dt) |
|
||||||
|
|
||||||
def points_valid(self): |
|
||||||
return self.points.num_okay >= int(self.okay_window_sec / self.dt) |
|
||||||
|
|
||||||
def update_points(self): |
|
||||||
if not self.lat_active: |
|
||||||
self.last_lat_inactive_t = self.t |
|
||||||
if self.steering_pressed: |
|
||||||
self.last_steering_pressed_t = self.t |
|
||||||
if self.steering_saturated: |
|
||||||
self.last_steering_saturated_t = self.t |
|
||||||
|
|
||||||
la_desired = self.desired_curvature * self.v_ego * self.v_ego |
|
||||||
la_actual_pose = self.yaw_rate * self.v_ego |
|
||||||
|
|
||||||
fast = self.v_ego > self.min_vego |
|
||||||
turning = np.abs(self.yaw_rate) >= self.min_yr |
|
||||||
has_recovered = all( # wait for recovery after !lat_active, steering_pressed, steering_saturated |
|
||||||
self.t - last_t >= self.min_recovery_buffer_sec |
|
||||||
for last_t in [self.last_lat_inactive_t, self.last_steering_pressed_t, self.last_steering_saturated_t] |
|
||||||
) |
|
||||||
okay = self.lat_active and not self.steering_pressed and not self.steering_saturated and fast and turning and has_recovered |
|
||||||
|
|
||||||
self.points.update(self.t, la_desired, la_actual_pose, okay) |
|
||||||
|
|
||||||
def update_estimate(self): |
|
||||||
if not self.points_enough(): |
|
||||||
return |
|
||||||
|
|
||||||
times, desired, actual, okay = self.points.get() |
|
||||||
# check if there are any new valid data points since the last update |
|
||||||
is_valid = self.points_valid() |
|
||||||
if self.last_estimate_t != 0 and times[0] <= self.last_estimate_t: |
|
||||||
new_values_start_idx = next(-i for i, t in enumerate(reversed(times)) if t <= self.last_estimate_t) |
|
||||||
is_valid = is_valid and not (new_values_start_idx == 0 or not np.any(okay[new_values_start_idx:])) |
|
||||||
|
|
||||||
delay, corr = self.actuator_delay(desired, actual, okay, self.dt, MAX_LAG) |
|
||||||
if corr < self.min_ncc or not is_valid: |
|
||||||
return |
|
||||||
|
|
||||||
self.block_avg.update(delay) |
|
||||||
self.last_estimate_t = self.t |
|
||||||
|
|
||||||
def actuator_delay(self, expected_sig: np.ndarray, actual_sig: np.ndarray, mask: np.ndarray, dt: float, max_lag: float) -> tuple[float, float]: |
|
||||||
assert len(expected_sig) == len(actual_sig) |
|
||||||
max_lag_samples = int(max_lag / dt) |
|
||||||
padded_size = fft_next_good_size(len(expected_sig) + max_lag_samples) |
|
||||||
|
|
||||||
ncc = masked_normalized_cross_correlation(expected_sig, actual_sig, mask, padded_size) |
|
||||||
|
|
||||||
# only consider lags from 0 to max_lag |
|
||||||
roi_ncc = ncc[len(expected_sig) - 1: len(expected_sig) - 1 + max_lag_samples] |
|
||||||
|
|
||||||
max_corr_index = np.argmax(roi_ncc) |
|
||||||
corr = roi_ncc[max_corr_index] |
|
||||||
lag = parabolic_peak_interp(roi_ncc, max_corr_index) * dt |
|
||||||
|
|
||||||
return lag, corr |
|
Loading…
Reference in new issue