parent
db51e93889
commit
1e01555a39
4 changed files with 301 additions and 304 deletions
@ -1,303 +0,0 @@ |
||||
import numpy as np |
||||
import capnp |
||||
from collections import deque |
||||
from functools import partial, cache |
||||
|
||||
import cereal.messaging as messaging |
||||
from cereal import log, car |
||||
from openpilot.selfdrive.locationd.helpers import PoseCalibrator, Pose |
||||
|
||||
BLOCK_SIZE = 100 |
||||
BLOCK_NUM = 50 |
||||
BLOCK_NUM_NEEDED = 5 |
||||
MOVING_WINDOW_SEC = 300.0 |
||||
MIN_OKAY_WINDOW_SEC = 30.0 |
||||
MIN_RECOVERY_BUFFER_SEC = 2.0 |
||||
MIN_VEGO = 15.0 |
||||
MIN_ABS_YAW_RATE = np.radians(1.0) |
||||
MIN_NCC = 0.95 |
||||
MAX_LAG = 1.0 |
||||
|
||||
|
||||
@cache |
||||
def fft_next_good_size(n: int) -> int: |
||||
""" |
||||
smallest composite of 2, 3, 5, 7, 11 that is >= n |
||||
inspired by pocketfft |
||||
""" |
||||
if n <= 6: |
||||
return n |
||||
best, f2 = 2 * n, 1 |
||||
while f2 < best: |
||||
f23 = f2 |
||||
while f23 < best: |
||||
f235 = f23 |
||||
while f235 < best: |
||||
f2357 = f235 |
||||
while f2357 < best: |
||||
f235711 = f2357 |
||||
while f235711 < best: |
||||
best = f235711 if f235711 >= n else best |
||||
f235711 *= 11 |
||||
f2357 *= 7 |
||||
f235 *= 5 |
||||
f23 *= 3 |
||||
f2 *= 2 |
||||
return best |
||||
|
||||
|
||||
def parabolic_peak_interp(R, max_index): |
||||
if max_index == 0 or max_index == len(R) - 1: |
||||
return max_index |
||||
|
||||
y_m1, y_0, y_p1 = R[max_index - 1], R[max_index], R[max_index + 1] |
||||
offset = 0.5 * (y_p1 - y_m1) / (2 * y_0 - y_p1 - y_m1) |
||||
|
||||
return max_index + offset |
||||
|
||||
|
||||
def masked_normalized_cross_correlation(expected_sig: np.ndarray, actual_sig: np.ndarray, mask: np.ndarray, n: int): |
||||
""" |
||||
References: |
||||
D. Padfield. "Masked FFT registration". In Proc. Computer Vision and |
||||
Pattern Recognition, pp. 2918-2925 (2010). |
||||
:DOI:`10.1109/CVPR.2010.5540032` |
||||
""" |
||||
|
||||
eps = np.finfo(np.float64).eps |
||||
expected_sig = np.asarray(expected_sig, dtype=np.float64) |
||||
actual_sig = np.asarray(actual_sig, dtype=np.float64) |
||||
|
||||
expected_sig[~mask] = 0.0 |
||||
actual_sig[~mask] = 0.0 |
||||
|
||||
rotated_expected_sig = expected_sig[::-1] |
||||
rotated_mask = mask[::-1] |
||||
|
||||
fft = partial(np.fft.fft, n=n) |
||||
|
||||
actual_sig_fft = fft(actual_sig) |
||||
rotated_expected_sig_fft = fft(rotated_expected_sig) |
||||
actual_mask_fft = fft(mask.astype(np.float64)) |
||||
rotated_mask_fft = fft(rotated_mask.astype(np.float64)) |
||||
|
||||
number_overlap_masked_samples = np.fft.ifft(rotated_mask_fft * actual_mask_fft).real |
||||
number_overlap_masked_samples[:] = np.round(number_overlap_masked_samples) |
||||
number_overlap_masked_samples[:] = np.fmax(number_overlap_masked_samples, eps) |
||||
masked_correlated_actual_fft = np.fft.ifft(rotated_mask_fft * actual_sig_fft).real |
||||
masked_correlated_expected_fft = np.fft.ifft(actual_mask_fft * rotated_expected_sig_fft).real |
||||
|
||||
numerator = np.fft.ifft(rotated_expected_sig_fft * actual_sig_fft).real |
||||
numerator -= masked_correlated_actual_fft * masked_correlated_expected_fft / number_overlap_masked_samples |
||||
|
||||
actual_squared_fft = fft(actual_sig ** 2) |
||||
actual_sig_denom = np.fft.ifft(rotated_mask_fft * actual_squared_fft).real |
||||
actual_sig_denom -= masked_correlated_actual_fft ** 2 / number_overlap_masked_samples |
||||
actual_sig_denom[:] = np.fmax(actual_sig_denom, 0.0) |
||||
|
||||
rotated_expected_squared_fft = fft(rotated_expected_sig ** 2) |
||||
expected_sig_denom = np.fft.ifft(actual_mask_fft * rotated_expected_squared_fft).real |
||||
expected_sig_denom -= masked_correlated_expected_fft ** 2 / number_overlap_masked_samples |
||||
expected_sig_denom[:] = np.fmax(expected_sig_denom, 0.0) |
||||
|
||||
denom = np.sqrt(actual_sig_denom * expected_sig_denom) |
||||
|
||||
# zero-out samples with very small denominators |
||||
tol = 1e3 * eps * np.max(np.abs(denom), keepdims=True) |
||||
nonzero_indices = denom > tol |
||||
|
||||
ncc = np.zeros_like(denom, dtype=np.float64) |
||||
ncc[nonzero_indices] = numerator[nonzero_indices] / denom[nonzero_indices] |
||||
np.clip(ncc, -1, 1, out=ncc) |
||||
|
||||
return ncc |
||||
|
||||
|
||||
class Points: |
||||
def __init__(self, num_points: int): |
||||
self.times = deque[float](maxlen=num_points) |
||||
self.okay = deque[bool](maxlen=num_points) |
||||
self.desired = deque[float](maxlen=num_points) |
||||
self.actual = deque[float](maxlen=num_points) |
||||
|
||||
@property |
||||
def num_points(self): |
||||
return len(self.desired) |
||||
|
||||
@property |
||||
def num_okay(self): |
||||
return np.count_nonzero(self.okay) |
||||
|
||||
def update(self, t: float, desired: float, actual: float, okay: bool): |
||||
self.times.append(t) |
||||
self.okay.append(okay) |
||||
self.desired.append(desired) |
||||
self.actual.append(actual) |
||||
|
||||
def get(self) -> tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]: |
||||
return np.array(self.times), np.array(self.desired), np.array(self.actual), np.array(self.okay) |
||||
|
||||
|
||||
class BlockAverage: |
||||
def __init__(self, num_blocks: int, block_size: int, valid_blocks: int, initial_value: float): |
||||
self.num_blocks = num_blocks |
||||
self.block_size = block_size |
||||
self.block_idx = valid_blocks % block_size |
||||
self.idx = 0 |
||||
|
||||
self.values = np.tile(initial_value, (num_blocks, 1)) |
||||
self.valid_blocks = valid_blocks |
||||
|
||||
def update(self, value: float): |
||||
self.values[self.block_idx] = (self.idx * self.values[self.block_idx] + (self.block_size - self.idx) * value) / self.block_size |
||||
self.idx = (self.idx + 1) % self.block_size |
||||
if self.idx == 0: |
||||
self.block_idx = (self.block_idx + 1) % self.num_blocks |
||||
self.valid_blocks = min(self.valid_blocks + 1, self.num_blocks) |
||||
|
||||
def get(self) -> float | None: |
||||
valid_block_idx = [i for i in range(self.valid_blocks) if i != self.block_idx] |
||||
if not valid_block_idx: |
||||
return None |
||||
return float(np.mean(self.values[valid_block_idx], axis=0).item()) |
||||
|
||||
|
||||
class LateralLagEstimator: |
||||
inputs = {"carControl", "carState", "controlsState", "liveCalibration", "livePose"} |
||||
|
||||
def __init__(self, CP: car.CarParams, dt: float, |
||||
block_count: int = BLOCK_NUM, min_valid_block_count: int = BLOCK_NUM_NEEDED, block_size: int = BLOCK_SIZE, |
||||
window_sec: float = MOVING_WINDOW_SEC, okay_window_sec: float = MIN_OKAY_WINDOW_SEC, min_recovery_buffer_sec: float = MIN_RECOVERY_BUFFER_SEC, |
||||
min_vego: float = MIN_VEGO, min_yr: float = MIN_ABS_YAW_RATE, min_ncc: float = MIN_NCC): |
||||
self.dt = dt |
||||
self.window_sec = window_sec |
||||
self.okay_window_sec = okay_window_sec |
||||
self.min_recovery_buffer_sec = min_recovery_buffer_sec |
||||
self.initial_lag = CP.steerActuatorDelay + 0.2 |
||||
self.block_size = block_size |
||||
self.block_count = block_count |
||||
self.min_valid_block_count = min_valid_block_count |
||||
self.min_vego = min_vego |
||||
self.min_yr = min_yr |
||||
self.min_ncc = min_ncc |
||||
|
||||
self.t = 0.0 |
||||
self.lat_active = False |
||||
self.steering_pressed = False |
||||
self.steering_saturated = False |
||||
self.desired_curvature = 0.0 |
||||
self.v_ego = 0.0 |
||||
self.yaw_rate = 0.0 |
||||
|
||||
self.last_lat_inactive_t = 0.0 |
||||
self.last_steering_pressed_t = 0.0 |
||||
self.last_steering_saturated_t = 0.0 |
||||
self.last_estimate_t = 0.0 |
||||
|
||||
self.calibrator = PoseCalibrator() |
||||
|
||||
self.reset(self.initial_lag, 0) |
||||
|
||||
def reset(self, initial_lag: float, valid_blocks: int): |
||||
window_len = int(self.window_sec / self.dt) |
||||
self.points = Points(window_len) |
||||
self.block_avg = BlockAverage(self.block_count, self.block_size, valid_blocks, initial_lag) |
||||
|
||||
def get_msg(self, valid: bool, debug: bool = False) -> capnp._DynamicStructBuilder: |
||||
msg = messaging.new_message('liveDelay') |
||||
|
||||
msg.valid = valid |
||||
|
||||
liveDelay = msg.liveDelay |
||||
|
||||
estimated_lag = self.block_avg.get() |
||||
liveDelay.lateralDelayEstimate = estimated_lag or self.initial_lag |
||||
if self.block_avg.valid_blocks >= self.min_valid_block_count and estimated_lag is not None: |
||||
liveDelay.status = log.LiveDelayData.Status.estimated |
||||
liveDelay.lateralDelay = estimated_lag |
||||
else: |
||||
liveDelay.status = log.LiveDelayData.Status.unestimated |
||||
liveDelay.lateralDelay = self.initial_lag |
||||
liveDelay.validBlocks = self.block_avg.valid_blocks |
||||
if debug: |
||||
liveDelay.points = self.block_avg.values.flatten().tolist() |
||||
|
||||
return msg |
||||
|
||||
def handle_log(self, t: float, which: str, msg: capnp._DynamicStructReader): |
||||
if which == "carControl": |
||||
self.lat_active = msg.latActive |
||||
elif which == "carState": |
||||
self.steering_pressed = msg.steeringPressed |
||||
self.v_ego = msg.vEgo |
||||
elif which == "controlsState": |
||||
self.steering_saturated = getattr(msg.lateralControlState, msg.lateralControlState.which()).saturated |
||||
self.desired_curvature = msg.desiredCurvature |
||||
elif which == "liveCalibration": |
||||
self.calibrator.feed_live_calib(msg) |
||||
elif which == "livePose": |
||||
device_pose = Pose.from_live_pose(msg) |
||||
calibrated_pose = self.calibrator.build_calibrated_pose(device_pose) |
||||
self.yaw_rate = calibrated_pose.angular_velocity.z |
||||
self.t = t |
||||
|
||||
def points_enough(self): |
||||
return self.points.num_points >= int(self.okay_window_sec / self.dt) |
||||
|
||||
def points_valid(self): |
||||
return self.points.num_okay >= int(self.okay_window_sec / self.dt) |
||||
|
||||
def update_points(self): |
||||
if not self.lat_active: |
||||
self.last_lat_inactive_t = self.t |
||||
if self.steering_pressed: |
||||
self.last_steering_pressed_t = self.t |
||||
if self.steering_saturated: |
||||
self.last_steering_saturated_t = self.t |
||||
|
||||
la_desired = self.desired_curvature * self.v_ego * self.v_ego |
||||
la_actual_pose = self.yaw_rate * self.v_ego |
||||
|
||||
fast = self.v_ego > self.min_vego |
||||
turning = np.abs(self.yaw_rate) >= self.min_yr |
||||
has_recovered = all( # wait for recovery after !lat_active, steering_pressed, steering_saturated |
||||
self.t - last_t >= self.min_recovery_buffer_sec |
||||
for last_t in [self.last_lat_inactive_t, self.last_steering_pressed_t, self.last_steering_saturated_t] |
||||
) |
||||
okay = self.lat_active and not self.steering_pressed and not self.steering_saturated and fast and turning and has_recovered |
||||
|
||||
self.points.update(self.t, la_desired, la_actual_pose, okay) |
||||
|
||||
def update_estimate(self): |
||||
if not self.points_enough(): |
||||
return |
||||
|
||||
times, desired, actual, okay = self.points.get() |
||||
# check if there are any new valid data points since the last update |
||||
is_valid = self.points_valid() |
||||
if self.last_estimate_t != 0 and times[0] <= self.last_estimate_t: |
||||
new_values_start_idx = next(-i for i, t in enumerate(reversed(times)) if t <= self.last_estimate_t) |
||||
is_valid = is_valid and not (new_values_start_idx == 0 or not np.any(okay[new_values_start_idx:])) |
||||
|
||||
delay, corr = self.actuator_delay(desired, actual, okay, self.dt, MAX_LAG) |
||||
if corr < self.min_ncc or not is_valid: |
||||
return |
||||
|
||||
self.block_avg.update(delay) |
||||
self.last_estimate_t = self.t |
||||
|
||||
def actuator_delay(self, expected_sig: np.ndarray, actual_sig: np.ndarray, mask: np.ndarray, dt: float, max_lag: float) -> tuple[float, float]: |
||||
assert len(expected_sig) == len(actual_sig) |
||||
max_lag_samples = int(max_lag / dt) |
||||
padded_size = fft_next_good_size(len(expected_sig) + max_lag_samples) |
||||
|
||||
ncc = masked_normalized_cross_correlation(expected_sig, actual_sig, mask, padded_size) |
||||
|
||||
# only consider lags from 0 to max_lag |
||||
roi_ncc = ncc[len(expected_sig) - 1: len(expected_sig) - 1 + max_lag_samples] |
||||
|
||||
max_corr_index = np.argmax(roi_ncc) |
||||
corr = roi_ncc[max_corr_index] |
||||
lag = parabolic_peak_interp(roi_ncc, max_corr_index) * dt |
||||
|
||||
return lag, corr |
Loading…
Reference in new issue