|
|
@ -1,9 +1,11 @@ |
|
|
|
import math |
|
|
|
import math |
|
|
|
import numpy as np |
|
|
|
import numpy as np |
|
|
|
|
|
|
|
from collections import deque |
|
|
|
|
|
|
|
|
|
|
|
from cereal import log |
|
|
|
from cereal import log |
|
|
|
from opendbc.car.lateral import FRICTION_THRESHOLD, get_friction |
|
|
|
from opendbc.car.lateral import FRICTION_THRESHOLD, get_friction |
|
|
|
from openpilot.common.constants import ACCELERATION_DUE_TO_GRAVITY |
|
|
|
from openpilot.common.constants import ACCELERATION_DUE_TO_GRAVITY |
|
|
|
|
|
|
|
from openpilot.selfdrive.controls.lib.drive_helpers import MIN_SPEED |
|
|
|
from openpilot.selfdrive.controls.lib.latcontrol import LatControl |
|
|
|
from openpilot.selfdrive.controls.lib.latcontrol import LatControl |
|
|
|
from openpilot.common.pid import PIDController |
|
|
|
from openpilot.common.pid import PIDController |
|
|
|
|
|
|
|
|
|
|
@ -29,9 +31,11 @@ class LatControlTorque(LatControl): |
|
|
|
self.torque_from_lateral_accel = CI.torque_from_lateral_accel() |
|
|
|
self.torque_from_lateral_accel = CI.torque_from_lateral_accel() |
|
|
|
self.lateral_accel_from_torque = CI.lateral_accel_from_torque() |
|
|
|
self.lateral_accel_from_torque = CI.lateral_accel_from_torque() |
|
|
|
self.pid = PIDController(self.torque_params.kp, self.torque_params.ki, |
|
|
|
self.pid = PIDController(self.torque_params.kp, self.torque_params.ki, |
|
|
|
k_f=self.torque_params.kf) |
|
|
|
k_f=self.torque_params.kf, rate=1/self.dt) |
|
|
|
self.update_limits() |
|
|
|
self.update_limits() |
|
|
|
self.steering_angle_deadzone_deg = self.torque_params.steeringAngleDeadzoneDeg |
|
|
|
self.steering_angle_deadzone_deg = self.torque_params.steeringAngleDeadzoneDeg |
|
|
|
|
|
|
|
self.LATACCEL_REQUEST_BUFFER_NUM_FRAMES = int(1 / self.dt) |
|
|
|
|
|
|
|
self.requested_lateral_accel_buffer = deque([0.] * self.LATACCEL_REQUEST_BUFFER_NUM_FRAMES , maxlen=self.LATACCEL_REQUEST_BUFFER_NUM_FRAMES) |
|
|
|
|
|
|
|
|
|
|
|
def update_live_torque_params(self, latAccelFactor, latAccelOffset, friction): |
|
|
|
def update_live_torque_params(self, latAccelFactor, latAccelOffset, friction): |
|
|
|
self.torque_params.latAccelFactor = latAccelFactor |
|
|
|
self.torque_params.latAccelFactor = latAccelFactor |
|
|
@ -43,7 +47,7 @@ class LatControlTorque(LatControl): |
|
|
|
self.pid.set_limits(self.lateral_accel_from_torque(self.steer_max, self.torque_params), |
|
|
|
self.pid.set_limits(self.lateral_accel_from_torque(self.steer_max, self.torque_params), |
|
|
|
self.lateral_accel_from_torque(-self.steer_max, self.torque_params)) |
|
|
|
self.lateral_accel_from_torque(-self.steer_max, self.torque_params)) |
|
|
|
|
|
|
|
|
|
|
|
def update(self, active, CS, VM, params, steer_limited_by_safety, desired_curvature, curvature_limited): |
|
|
|
def update(self, active, CS, VM, params, steer_limited_by_safety, desired_curvature, curvature_limited, lat_delay): |
|
|
|
pid_log = log.ControlsState.LateralTorqueState.new_message() |
|
|
|
pid_log = log.ControlsState.LateralTorqueState.new_message() |
|
|
|
if not active: |
|
|
|
if not active: |
|
|
|
output_torque = 0.0 |
|
|
|
output_torque = 0.0 |
|
|
@ -53,21 +57,29 @@ class LatControlTorque(LatControl): |
|
|
|
roll_compensation = params.roll * ACCELERATION_DUE_TO_GRAVITY |
|
|
|
roll_compensation = params.roll * ACCELERATION_DUE_TO_GRAVITY |
|
|
|
curvature_deadzone = abs(VM.calc_curvature(math.radians(self.steering_angle_deadzone_deg), CS.vEgo, 0.0)) |
|
|
|
curvature_deadzone = abs(VM.calc_curvature(math.radians(self.steering_angle_deadzone_deg), CS.vEgo, 0.0)) |
|
|
|
|
|
|
|
|
|
|
|
desired_lateral_accel = desired_curvature * CS.vEgo ** 2 |
|
|
|
delay_frames = int(np.clip(lat_delay / self.dt, 1, self.LATACCEL_REQUEST_BUFFER_NUM_FRAMES)) |
|
|
|
|
|
|
|
expected_lateral_accel = self.requested_lateral_accel_buffer[-delay_frames] |
|
|
|
|
|
|
|
# TODO factor out lateral jerk from error to later replace it with delay independent alternative |
|
|
|
|
|
|
|
future_desired_lateral_accel = desired_curvature * CS.vEgo ** 2 |
|
|
|
|
|
|
|
self.requested_lateral_accel_buffer.append(future_desired_lateral_accel) |
|
|
|
|
|
|
|
gravity_adjusted_future_lateral_accel = future_desired_lateral_accel - roll_compensation |
|
|
|
|
|
|
|
desired_lateral_jerk = (future_desired_lateral_accel - expected_lateral_accel) / lat_delay |
|
|
|
actual_lateral_accel = actual_curvature * CS.vEgo ** 2 |
|
|
|
actual_lateral_accel = actual_curvature * CS.vEgo ** 2 |
|
|
|
lateral_accel_deadzone = curvature_deadzone * CS.vEgo ** 2 |
|
|
|
lateral_accel_deadzone = curvature_deadzone * CS.vEgo ** 2 |
|
|
|
|
|
|
|
|
|
|
|
low_speed_factor = np.interp(CS.vEgo, LOW_SPEED_X, LOW_SPEED_Y)**2 |
|
|
|
low_speed_factor = np.interp(CS.vEgo, LOW_SPEED_X, LOW_SPEED_Y)**2 / (np.clip(CS.vEgo, MIN_SPEED, np.inf) ** 2) |
|
|
|
setpoint = desired_lateral_accel + low_speed_factor * desired_curvature |
|
|
|
setpoint = lat_delay * desired_lateral_jerk + expected_lateral_accel |
|
|
|
measurement = actual_lateral_accel + low_speed_factor * actual_curvature |
|
|
|
measurement = actual_lateral_accel |
|
|
|
gravity_adjusted_lateral_accel = desired_lateral_accel - roll_compensation |
|
|
|
error = setpoint - measurement |
|
|
|
|
|
|
|
error_lsf = error + low_speed_factor * error |
|
|
|
|
|
|
|
|
|
|
|
# do error correction in lateral acceleration space, convert at end to handle non-linear torque responses correctly |
|
|
|
# do error correction in lateral acceleration space, convert at end to handle non-linear torque responses correctly |
|
|
|
pid_log.error = float(setpoint - measurement) |
|
|
|
pid_log.error = float(error_lsf) |
|
|
|
ff = gravity_adjusted_lateral_accel |
|
|
|
ff = gravity_adjusted_future_lateral_accel |
|
|
|
# latAccelOffset corrects roll compensation bias from device roll misalignment relative to car roll |
|
|
|
# latAccelOffset corrects roll compensation bias from device roll misalignment relative to car roll |
|
|
|
ff -= self.torque_params.latAccelOffset |
|
|
|
ff -= self.torque_params.latAccelOffset |
|
|
|
ff += get_friction(desired_lateral_accel - actual_lateral_accel, lateral_accel_deadzone, FRICTION_THRESHOLD, self.torque_params) |
|
|
|
# TODO jerk is weighted by lat_delay for legacy reasons, but should be made independent of it |
|
|
|
|
|
|
|
ff += get_friction(error, lateral_accel_deadzone, FRICTION_THRESHOLD, self.torque_params) |
|
|
|
|
|
|
|
|
|
|
|
freeze_integrator = steer_limited_by_safety or CS.steeringPressed or CS.vEgo < 5 |
|
|
|
freeze_integrator = steer_limited_by_safety or CS.steeringPressed or CS.vEgo < 5 |
|
|
|
output_lataccel = self.pid.update(pid_log.error, |
|
|
|
output_lataccel = self.pid.update(pid_log.error, |
|
|
@ -83,7 +95,7 @@ class LatControlTorque(LatControl): |
|
|
|
pid_log.f = float(self.pid.f) |
|
|
|
pid_log.f = float(self.pid.f) |
|
|
|
pid_log.output = float(-output_torque) # TODO: log lat accel? |
|
|
|
pid_log.output = float(-output_torque) # TODO: log lat accel? |
|
|
|
pid_log.actualLateralAccel = float(actual_lateral_accel) |
|
|
|
pid_log.actualLateralAccel = float(actual_lateral_accel) |
|
|
|
pid_log.desiredLateralAccel = float(desired_lateral_accel) |
|
|
|
pid_log.desiredLateralAccel = float(expected_lateral_accel) |
|
|
|
pid_log.saturated = bool(self._check_saturation(self.steer_max - abs(output_torque) < 1e-3, CS, steer_limited_by_safety, curvature_limited)) |
|
|
|
pid_log.saturated = bool(self._check_saturation(self.steer_max - abs(output_torque) < 1e-3, CS, steer_limited_by_safety, curvature_limited)) |
|
|
|
|
|
|
|
|
|
|
|
# TODO left is positive in this convention |
|
|
|
# TODO left is positive in this convention |
|
|
|