parent
cf4ad99554
commit
22c8564413
31 changed files with 1218 additions and 375 deletions
@ -1 +1,4 @@ |
||||
acados/ |
||||
!x86_64/ |
||||
!larch64/ |
||||
!aarch64/ |
||||
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
@ -0,0 +1,402 @@ |
||||
import sys |
||||
import os |
||||
import json |
||||
import numpy as np |
||||
from datetime import datetime |
||||
|
||||
from ctypes import POINTER, CDLL, c_void_p, c_int, cast, c_double, c_char_p |
||||
|
||||
from copy import deepcopy |
||||
|
||||
from .generate_c_code_explicit_ode import generate_c_code_explicit_ode |
||||
from .generate_c_code_implicit_ode import generate_c_code_implicit_ode |
||||
from .generate_c_code_gnsf import generate_c_code_gnsf |
||||
from .generate_c_code_discrete_dynamics import generate_c_code_discrete_dynamics |
||||
from .generate_c_code_constraint import generate_c_code_constraint |
||||
from .generate_c_code_nls_cost import generate_c_code_nls_cost |
||||
from .generate_c_code_external_cost import generate_c_code_external_cost |
||||
from .acados_ocp import AcadosOcp |
||||
from .acados_model import acados_model_strip_casadi_symbolics |
||||
from .utils import is_column, is_empty, casadi_length, render_template, acados_class2dict,\ |
||||
format_class_dict, ocp_check_against_layout, np_array_to_list, make_model_consistent,\ |
||||
set_up_imported_gnsf_model, get_acados_path |
||||
|
||||
|
||||
class AcadosOcpSolverFast: |
||||
dlclose = CDLL(None).dlclose |
||||
dlclose.argtypes = [c_void_p] |
||||
|
||||
def __init__(self, model_name, N, code_export_dir): |
||||
|
||||
self.solver_created = False |
||||
self.N = N |
||||
self.model_name = model_name |
||||
|
||||
self.shared_lib_name = f'{code_export_dir}/libacados_ocp_solver_{model_name}.so' |
||||
|
||||
# get shared_lib |
||||
self.shared_lib = CDLL(self.shared_lib_name) |
||||
|
||||
# create capsule |
||||
getattr(self.shared_lib, f"{model_name}_acados_create_capsule").restype = c_void_p |
||||
self.capsule = getattr(self.shared_lib, f"{model_name}_acados_create_capsule")() |
||||
|
||||
# create solver |
||||
getattr(self.shared_lib, f"{model_name}_acados_create").argtypes = [c_void_p] |
||||
getattr(self.shared_lib, f"{model_name}_acados_create").restype = c_int |
||||
assert getattr(self.shared_lib, f"{model_name}_acados_create")(self.capsule)==0 |
||||
self.solver_created = True |
||||
|
||||
# get pointers solver |
||||
getattr(self.shared_lib, f"{model_name}_acados_get_nlp_opts").argtypes = [c_void_p] |
||||
getattr(self.shared_lib, f"{model_name}_acados_get_nlp_opts").restype = c_void_p |
||||
self.nlp_opts = getattr(self.shared_lib, f"{model_name}_acados_get_nlp_opts")(self.capsule) |
||||
|
||||
getattr(self.shared_lib, f"{model_name}_acados_get_nlp_dims").argtypes = [c_void_p] |
||||
getattr(self.shared_lib, f"{model_name}_acados_get_nlp_dims").restype = c_void_p |
||||
self.nlp_dims = getattr(self.shared_lib, f"{model_name}_acados_get_nlp_dims")(self.capsule) |
||||
|
||||
getattr(self.shared_lib, f"{model_name}_acados_get_nlp_config").argtypes = [c_void_p] |
||||
getattr(self.shared_lib, f"{model_name}_acados_get_nlp_config").restype = c_void_p |
||||
self.nlp_config = getattr(self.shared_lib, f"{model_name}_acados_get_nlp_config")(self.capsule) |
||||
|
||||
getattr(self.shared_lib, f"{model_name}_acados_get_nlp_out").argtypes = [c_void_p] |
||||
getattr(self.shared_lib, f"{model_name}_acados_get_nlp_out").restype = c_void_p |
||||
self.nlp_out = getattr(self.shared_lib, f"{model_name}_acados_get_nlp_out")(self.capsule) |
||||
|
||||
getattr(self.shared_lib, f"{model_name}_acados_get_nlp_in").argtypes = [c_void_p] |
||||
getattr(self.shared_lib, f"{model_name}_acados_get_nlp_in").restype = c_void_p |
||||
self.nlp_in = getattr(self.shared_lib, f"{model_name}_acados_get_nlp_in")(self.capsule) |
||||
|
||||
getattr(self.shared_lib, f"{model_name}_acados_get_nlp_solver").argtypes = [c_void_p] |
||||
getattr(self.shared_lib, f"{model_name}_acados_get_nlp_solver").restype = c_void_p |
||||
self.nlp_solver = getattr(self.shared_lib, f"{model_name}_acados_get_nlp_solver")(self.capsule) |
||||
|
||||
|
||||
def solve(self): |
||||
""" |
||||
Solve the ocp with current input. |
||||
""" |
||||
model_name = self.model_name |
||||
|
||||
getattr(self.shared_lib, f"{model_name}_acados_solve").argtypes = [c_void_p] |
||||
getattr(self.shared_lib, f"{model_name}_acados_solve").restype = c_int |
||||
status = getattr(self.shared_lib, f"{model_name}_acados_solve")(self.capsule) |
||||
return status |
||||
|
||||
def cost_set(self, start_stage_, field_, value_, api='warn'): |
||||
self.cost_set_slice(start_stage_, start_stage_+1, field_, value_[None], api='warn') |
||||
return |
||||
|
||||
def cost_set_slice(self, start_stage_, end_stage_, field_, value_, api='warn'): |
||||
""" |
||||
Set numerical data in the cost module of the solver. |
||||
|
||||
:param stage: integer corresponding to shooting node |
||||
:param field: string, e.g. 'yref', 'W', 'ext_cost_num_hess' |
||||
:param value: of appropriate size |
||||
""" |
||||
# cast value_ to avoid conversion issues |
||||
if isinstance(value_, (float, int)): |
||||
value_ = np.array([value_]) |
||||
value_ = np.ascontiguousarray(np.copy(value_), dtype=np.float64) |
||||
field = field_ |
||||
field = field.encode('utf-8') |
||||
dim = np.product(value_.shape[1:]) |
||||
|
||||
start_stage = c_int(start_stage_) |
||||
end_stage = c_int(end_stage_) |
||||
self.shared_lib.ocp_nlp_cost_dims_get_from_attr.argtypes = \ |
||||
[c_void_p, c_void_p, c_void_p, c_int, c_char_p, POINTER(c_int)] |
||||
self.shared_lib.ocp_nlp_cost_dims_get_from_attr.restype = c_int |
||||
|
||||
dims = np.ascontiguousarray(np.zeros((2,)), dtype=np.intc) |
||||
dims_data = cast(dims.ctypes.data, POINTER(c_int)) |
||||
|
||||
self.shared_lib.ocp_nlp_cost_dims_get_from_attr(self.nlp_config, |
||||
self.nlp_dims, self.nlp_out, start_stage_, field, dims_data) |
||||
|
||||
value_shape = value_.shape |
||||
expected_shape = tuple(np.concatenate([np.array([end_stage_ - start_stage_]), dims])) |
||||
if len(value_shape) == 2: |
||||
value_shape = (value_shape[0], value_shape[1], 0) |
||||
|
||||
elif len(value_shape) == 3: |
||||
if api=='old': |
||||
pass |
||||
elif api=='warn': |
||||
if not np.all(np.ravel(value_, order='F')==np.ravel(value_, order='K')): |
||||
raise Exception("Ambiguity in API detected.\n" |
||||
"Are you making an acados model from scrach? Add api='new' to cost_set and carry on.\n" |
||||
"Are you seeing this error suddenly in previously running code? Read on.\n" |
||||
" You are relying on a now-fixed bug in cost_set for field '{}'.\n".format(field_) + |
||||
" acados_template now correctly passes on any matrices to acados in column major format.\n" + |
||||
" Two options to fix this error: \n" + |
||||
" * Add api='old' to cost_set to restore old incorrect behaviour\n" + |
||||
" * Add api='new' to cost_set and remove any unnatural manipulation of the value argument " + |
||||
"such as non-mathematical transposes, reshaping, casting to fortran order, etc... " + |
||||
"If there is no such manipulation, then you have probably been getting an incorrect solution before.") |
||||
# Get elements in column major order |
||||
value_ = np.ravel(value_, order='F') |
||||
elif api=='new': |
||||
# Get elements in column major order |
||||
value_ = np.ravel(value_, order='F') |
||||
else: |
||||
raise Exception("Unknown api: '{}'".format(api)) |
||||
|
||||
if value_shape != expected_shape: |
||||
raise Exception('AcadosOcpSolver.cost_set(): mismatching dimension', |
||||
' for field "{}" with dimension {} (you have {})'.format( |
||||
field_, expected_shape, value_shape)) |
||||
|
||||
|
||||
value_data = cast(value_.ctypes.data, POINTER(c_double)) |
||||
value_data_p = cast((value_data), c_void_p) |
||||
|
||||
self.shared_lib.ocp_nlp_cost_model_set_slice.argtypes = \ |
||||
[c_void_p, c_void_p, c_void_p, c_int, c_int, c_char_p, c_void_p, c_int] |
||||
self.shared_lib.ocp_nlp_cost_model_set_slice(self.nlp_config, |
||||
self.nlp_dims, self.nlp_in, start_stage, end_stage, field, value_data_p, dim) |
||||
return |
||||
|
||||
def constraints_set(self, start_stage_, field_, value_, api='warn'): |
||||
self.constraints_set_slice(start_stage_, start_stage_+1, field_, value_[None], api='warn') |
||||
return |
||||
|
||||
def constraints_set_slice(self, start_stage_, end_stage_, field_, value_, api='warn'): |
||||
""" |
||||
Set numerical data in the constraint module of the solver. |
||||
|
||||
:param stage: integer corresponding to shooting node |
||||
:param field: string in ['lbx', 'ubx', 'lbu', 'ubu', 'lg', 'ug', 'lh', 'uh', 'uphi'] |
||||
:param value: of appropriate size |
||||
""" |
||||
# cast value_ to avoid conversion issues |
||||
if isinstance(value_, (float, int)): |
||||
value_ = np.array([value_]) |
||||
value_ = value_.astype(float) |
||||
|
||||
field = field_ |
||||
field = field.encode('utf-8') |
||||
dim = np.product(value_.shape[1:]) |
||||
|
||||
start_stage = c_int(start_stage_) |
||||
end_stage = c_int(end_stage_) |
||||
self.shared_lib.ocp_nlp_constraint_dims_get_from_attr.argtypes = \ |
||||
[c_void_p, c_void_p, c_void_p, c_int, c_char_p, POINTER(c_int)] |
||||
self.shared_lib.ocp_nlp_constraint_dims_get_from_attr.restype = c_int |
||||
|
||||
dims = np.ascontiguousarray(np.zeros((2,)), dtype=np.intc) |
||||
dims_data = cast(dims.ctypes.data, POINTER(c_int)) |
||||
|
||||
self.shared_lib.ocp_nlp_constraint_dims_get_from_attr(self.nlp_config, \ |
||||
self.nlp_dims, self.nlp_out, start_stage_, field, dims_data) |
||||
|
||||
value_shape = value_.shape |
||||
expected_shape = tuple(np.concatenate([np.array([end_stage_ - start_stage_]), dims])) |
||||
if len(value_shape) == 2: |
||||
value_shape = (value_shape[0], value_shape[1], 0) |
||||
elif len(value_shape) == 3: |
||||
if api=='old': |
||||
pass |
||||
elif api=='warn': |
||||
if not np.all(np.ravel(value_, order='F')==np.ravel(value_, order='K')): |
||||
raise Exception("Ambiguity in API detected.\n" |
||||
"Are you making an acados model from scrach? Add api='new' to constraints_set and carry on.\n" |
||||
"Are you seeing this error suddenly in previously running code? Read on.\n" |
||||
" You are relying on a now-fixed bug in constraints_set for field '{}'.\n".format(field_) + |
||||
" acados_template now correctly passes on any matrices to acados in column major format.\n" + |
||||
" Two options to fix this error: \n" + |
||||
" * Add api='old' to constraints_set to restore old incorrect behaviour\n" + |
||||
" * Add api='new' to constraints_set and remove any unnatural manipulation of the value argument " + |
||||
"such as non-mathematical transposes, reshaping, casting to fortran order, etc... " + |
||||
"If there is no such manipulation, then you have probably been getting an incorrect solution before.") |
||||
# Get elements in column major order |
||||
value_ = np.ravel(value_, order='F') |
||||
elif api=='new': |
||||
# Get elements in column major order |
||||
value_ = np.ravel(value_, order='F') |
||||
else: |
||||
raise Exception("Unknown api: '{}'".format(api)) |
||||
if value_shape != expected_shape: |
||||
raise Exception('AcadosOcpSolver.constraints_set(): mismatching dimension' \ |
||||
' for field "{}" with dimension {} (you have {})'.format(field_, expected_shape, value_shape)) |
||||
|
||||
value_data = cast(value_.ctypes.data, POINTER(c_double)) |
||||
value_data_p = cast((value_data), c_void_p) |
||||
|
||||
self.shared_lib.ocp_nlp_constraints_model_set_slice.argtypes = \ |
||||
[c_void_p, c_void_p, c_void_p, c_int, c_int, c_char_p, c_void_p, c_int] |
||||
self.shared_lib.ocp_nlp_constraints_model_set_slice(self.nlp_config, \ |
||||
self.nlp_dims, self.nlp_in, start_stage, end_stage, field, value_data_p, dim) |
||||
return |
||||
|
||||
# Note: this function should not be used anymore, better use cost_set, constraints_set |
||||
def set(self, stage_, field_, value_): |
||||
""" |
||||
Set numerical data inside the solver. |
||||
|
||||
:param stage: integer corresponding to shooting node |
||||
:param field: string in ['x', 'u', 'pi', 'lam', 't', 'p'] |
||||
|
||||
.. note:: regarding lam, t: \n |
||||
the inequalities are internally organized in the following order: \n |
||||
[ lbu lbx lg lh lphi ubu ubx ug uh uphi; \n |
||||
lsbu lsbx lsg lsh lsphi usbu usbx usg ush usphi] |
||||
|
||||
.. note:: pi: multipliers for dynamics equality constraints \n |
||||
lam: multipliers for inequalities \n |
||||
t: slack variables corresponding to evaluation of all inequalities (at the solution) \n |
||||
sl: slack variables of soft lower inequality constraints \n |
||||
su: slack variables of soft upper inequality constraints \n |
||||
""" |
||||
cost_fields = ['y_ref', 'yref'] |
||||
constraints_fields = ['lbx', 'ubx', 'lbu', 'ubu'] |
||||
out_fields = ['x', 'u', 'pi', 'lam', 't', 'z'] |
||||
mem_fields = ['sl', 'su'] |
||||
|
||||
# cast value_ to avoid conversion issues |
||||
if isinstance(value_, (float, int)): |
||||
value_ = np.array([value_]) |
||||
value_ = value_.astype(float) |
||||
|
||||
model_name = self.model_name |
||||
|
||||
field = field_ |
||||
field = field.encode('utf-8') |
||||
|
||||
stage = c_int(stage_) |
||||
|
||||
# treat parameters separately |
||||
if field_ == 'p': |
||||
getattr(self.shared_lib, f"{model_name}_acados_update_params").argtypes = [c_void_p, c_int, POINTER(c_double)] |
||||
getattr(self.shared_lib, f"{model_name}_acados_update_params").restype = c_int |
||||
|
||||
value_data = cast(value_.ctypes.data, POINTER(c_double)) |
||||
|
||||
assert getattr(self.shared_lib, f"{model_name}_acados_update_params")(self.capsule, stage, value_data, value_.shape[0])==0 |
||||
else: |
||||
if field_ not in constraints_fields + cost_fields + out_fields + mem_fields: |
||||
raise Exception("AcadosOcpSolver.set(): {} is not a valid argument.\ |
||||
\nPossible values are {}. Exiting.".format(field, \ |
||||
constraints_fields + cost_fields + out_fields + ['p'])) |
||||
|
||||
self.shared_lib.ocp_nlp_dims_get_from_attr.argtypes = \ |
||||
[c_void_p, c_void_p, c_void_p, c_int, c_char_p] |
||||
self.shared_lib.ocp_nlp_dims_get_from_attr.restype = c_int |
||||
|
||||
dims = self.shared_lib.ocp_nlp_dims_get_from_attr(self.nlp_config, \ |
||||
self.nlp_dims, self.nlp_out, stage_, field) |
||||
|
||||
if value_.shape[0] != dims: |
||||
msg = 'AcadosOcpSolver.set(): mismatching dimension for field "{}" '.format(field_) |
||||
msg += 'with dimension {} (you have {})'.format(dims, value_.shape) |
||||
raise Exception(msg) |
||||
|
||||
value_data = cast(value_.ctypes.data, POINTER(c_double)) |
||||
value_data_p = cast((value_data), c_void_p) |
||||
|
||||
if field_ in constraints_fields: |
||||
self.shared_lib.ocp_nlp_constraints_model_set.argtypes = \ |
||||
[c_void_p, c_void_p, c_void_p, c_int, c_char_p, c_void_p] |
||||
self.shared_lib.ocp_nlp_constraints_model_set(self.nlp_config, \ |
||||
self.nlp_dims, self.nlp_in, stage, field, value_data_p) |
||||
elif field_ in cost_fields: |
||||
self.shared_lib.ocp_nlp_cost_model_set.argtypes = \ |
||||
[c_void_p, c_void_p, c_void_p, c_int, c_char_p, c_void_p] |
||||
self.shared_lib.ocp_nlp_cost_model_set(self.nlp_config, \ |
||||
self.nlp_dims, self.nlp_in, stage, field, value_data_p) |
||||
elif field_ in out_fields: |
||||
self.shared_lib.ocp_nlp_out_set.argtypes = \ |
||||
[c_void_p, c_void_p, c_void_p, c_int, c_char_p, c_void_p] |
||||
self.shared_lib.ocp_nlp_out_set(self.nlp_config, \ |
||||
self.nlp_dims, self.nlp_out, stage, field, value_data_p) |
||||
elif field_ in mem_fields: |
||||
self.shared_lib.ocp_nlp_set.argtypes = \ |
||||
[c_void_p, c_void_p, c_int, c_char_p, c_void_p] |
||||
self.shared_lib.ocp_nlp_set(self.nlp_config, \ |
||||
self.nlp_solver, stage, field, value_data_p) |
||||
return |
||||
|
||||
|
||||
def get_slice(self, start_stage_, end_stage_, field_): |
||||
""" |
||||
Get the last solution of the solver: |
||||
|
||||
:param start_stage: integer corresponding to shooting node that indicates start of slice |
||||
:param end_stage: integer corresponding to shooting node that indicates end of slice |
||||
:param field: string in ['x', 'u', 'z', 'pi', 'lam', 't', 'sl', 'su',] |
||||
|
||||
.. note:: regarding lam, t: \n |
||||
the inequalities are internally organized in the following order: \n |
||||
[ lbu lbx lg lh lphi ubu ubx ug uh uphi; \n |
||||
lsbu lsbx lsg lsh lsphi usbu usbx usg ush usphi] |
||||
|
||||
.. note:: pi: multipliers for dynamics equality constraints \n |
||||
lam: multipliers for inequalities \n |
||||
t: slack variables corresponding to evaluation of all inequalities (at the solution) \n |
||||
sl: slack variables of soft lower inequality constraints \n |
||||
su: slack variables of soft upper inequality constraints \n |
||||
""" |
||||
out_fields = ['x', 'u', 'z', 'pi', 'lam', 't'] |
||||
mem_fields = ['sl', 'su'] |
||||
field = field_ |
||||
field = field.encode('utf-8') |
||||
|
||||
if (field_ not in out_fields + mem_fields): |
||||
raise Exception('AcadosOcpSolver.get_slice(): {} is an invalid argument.\ |
||||
\n Possible values are {}. Exiting.'.format(field_, out_fields)) |
||||
|
||||
if not isinstance(start_stage_, int): |
||||
raise Exception('AcadosOcpSolver.get_slice(): stage index must be Integer.') |
||||
|
||||
if not isinstance(end_stage_, int): |
||||
raise Exception('AcadosOcpSolver.get_slice(): stage index must be Integer.') |
||||
|
||||
if start_stage_ >= end_stage_: |
||||
raise Exception('AcadosOcpSolver.get_slice(): end stage index must be larger than start stage index') |
||||
|
||||
if start_stage_ < 0 or end_stage_ > self.N + 1: |
||||
raise Exception('AcadosOcpSolver.get_slice(): stage index must be in [0, N], got: {}.'.format(self.N)) |
||||
self.shared_lib.ocp_nlp_dims_get_from_attr.argtypes = \ |
||||
[c_void_p, c_void_p, c_void_p, c_int, c_char_p] |
||||
self.shared_lib.ocp_nlp_dims_get_from_attr.restype = c_int |
||||
|
||||
dims = self.shared_lib.ocp_nlp_dims_get_from_attr(self.nlp_config, \ |
||||
self.nlp_dims, self.nlp_out, start_stage_, field) |
||||
|
||||
out = np.ascontiguousarray(np.zeros((end_stage_ - start_stage_, dims)), dtype=np.float64) |
||||
out_data = cast(out.ctypes.data, POINTER(c_double)) |
||||
|
||||
if (field_ in out_fields): |
||||
self.shared_lib.ocp_nlp_out_get_slice.argtypes = \ |
||||
[c_void_p, c_void_p, c_void_p, c_int, c_int, c_char_p, c_void_p] |
||||
self.shared_lib.ocp_nlp_out_get_slice(self.nlp_config, \ |
||||
self.nlp_dims, self.nlp_out, start_stage_, end_stage_, field, out_data) |
||||
elif field_ in mem_fields: |
||||
self.shared_lib.ocp_nlp_get_at_stage.argtypes = \ |
||||
[c_void_p, c_void_p, c_void_p, c_int, c_char_p, c_void_p] |
||||
self.shared_lib.ocp_nlp_get_at_stage(self.nlp_config, \ |
||||
self.nlp_dims, self.nlp_solver, start_stage_, end_stage_, field, out_data) |
||||
|
||||
return out |
||||
|
||||
def get_cost(self): |
||||
""" |
||||
Returns the cost value of the current solution. |
||||
""" |
||||
# compute cost internally |
||||
self.shared_lib.ocp_nlp_eval_cost.argtypes = [c_void_p, c_void_p, c_void_p] |
||||
self.shared_lib.ocp_nlp_eval_cost(self.nlp_solver, self.nlp_in, self.nlp_out) |
||||
|
||||
# create output array |
||||
out = np.ascontiguousarray(np.zeros((1,)), dtype=np.float64) |
||||
out_data = cast(out.ctypes.data, POINTER(c_double)) |
||||
|
||||
# call getter |
||||
self.shared_lib.ocp_nlp_get.argtypes = [c_void_p, c_void_p, c_char_p, c_void_p] |
||||
|
||||
field = "cost_value".encode('utf-8') |
||||
self.shared_lib.ocp_nlp_get(self.nlp_config, self.nlp_solver, field, out_data) |
||||
|
||||
return out[0] |
File diff suppressed because it is too large
Load Diff
Loading…
Reference in new issue