|
|
|
@ -1,8 +1,7 @@ |
|
|
|
|
#!/usr/bin/env python3 |
|
|
|
|
import numpy as np |
|
|
|
|
from collections import deque |
|
|
|
|
|
|
|
|
|
from skimage.registration._masked_phase_cross_correlation import cross_correlate_masked |
|
|
|
|
from functools import partial |
|
|
|
|
|
|
|
|
|
import cereal.messaging as messaging |
|
|
|
|
from cereal import car, log |
|
|
|
@ -155,22 +154,68 @@ class LagEstimator: |
|
|
|
|
def correlation_lags(self, sig_len, dt): |
|
|
|
|
return np.arange(0, sig_len) * dt |
|
|
|
|
|
|
|
|
|
def actuator_delay(self, expected_sig, actual_sig, is_okay, dt, max_lag=1.): |
|
|
|
|
# masked (gated) normalized cross-correlation |
|
|
|
|
# normalized, can be used for anything, like comparsion |
|
|
|
|
def actuator_delay(self, expected_sig, actual_sig, mask, dt, max_lag=1.): |
|
|
|
|
""" |
|
|
|
|
References: |
|
|
|
|
D. Padfield. "Masked FFT registration". In Proc. Computer Vision and |
|
|
|
|
Pattern Recognition, pp. 2918-2925 (2010). |
|
|
|
|
:DOI:`10.1109/CVPR.2010.5540032` |
|
|
|
|
""" |
|
|
|
|
|
|
|
|
|
eps = np.finfo(np.float64).eps |
|
|
|
|
expected_sig = np.asarray(expected_sig, dtype=np.float64) |
|
|
|
|
actual_sig = np.asarray(actual_sig, dtype=np.float64) |
|
|
|
|
|
|
|
|
|
expected_sig[~mask] = 0.0 |
|
|
|
|
actual_sig[~mask] = 0.0 |
|
|
|
|
|
|
|
|
|
rotated_expected_sig = expected_sig[::-1] |
|
|
|
|
rotated_mask = mask[::-1] |
|
|
|
|
|
|
|
|
|
n = len(expected_sig) + len(actual_sig) - 1 |
|
|
|
|
fft = partial(np.fft.fft, n=n) |
|
|
|
|
|
|
|
|
|
actual_sig_fft = fft(actual_sig) |
|
|
|
|
rotated_expected_sig_fft = fft(rotated_expected_sig) |
|
|
|
|
actual_mask_fft = fft(mask.astype(np.float64)) |
|
|
|
|
rotated_mask_fft = fft(rotated_mask.astype(np.float64)) |
|
|
|
|
|
|
|
|
|
number_overlap_masked_samples = np.fft.ifft(rotated_mask_fft * actual_mask_fft).real |
|
|
|
|
number_overlap_masked_samples[:] = np.round(number_overlap_masked_samples) |
|
|
|
|
number_overlap_masked_samples[:] = np.fmax(number_overlap_masked_samples, eps) |
|
|
|
|
masked_correlated_actual_fft = np.fft.ifft(rotated_mask_fft * actual_sig_fft).real |
|
|
|
|
masked_correlated_expected_fft = np.fft.ifft(actual_mask_fft * rotated_expected_sig_fft).real |
|
|
|
|
|
|
|
|
|
numerator = np.fft.ifft(rotated_expected_sig_fft * actual_sig_fft).real |
|
|
|
|
numerator -= masked_correlated_actual_fft * masked_correlated_expected_fft / number_overlap_masked_samples |
|
|
|
|
|
|
|
|
|
actual_squared_fft = fft(actual_sig ** 2) |
|
|
|
|
actual_sig_denom = np.fft.ifft(rotated_mask_fft * actual_squared_fft).real |
|
|
|
|
actual_sig_denom -= masked_correlated_actual_fft ** 2 / number_overlap_masked_samples |
|
|
|
|
actual_sig_denom[:] = np.fmax(actual_sig_denom, 0.0) |
|
|
|
|
|
|
|
|
|
rotated_expected_squared_fft = fft(rotated_expected_sig ** 2) |
|
|
|
|
expected_sig_denom = np.fft.ifft(actual_mask_fft * rotated_expected_squared_fft).real |
|
|
|
|
expected_sig_denom -= masked_correlated_expected_fft ** 2 / number_overlap_masked_samples |
|
|
|
|
expected_sig_denom[:] = np.fmax(expected_sig_denom, 0.0) |
|
|
|
|
|
|
|
|
|
denom = np.sqrt(actual_sig_denom * expected_sig_denom) |
|
|
|
|
|
|
|
|
|
assert len(expected_sig) == len(actual_sig) |
|
|
|
|
# zero-out samples with very small denominators |
|
|
|
|
tol = 1e3 * eps * np.max(np.abs(denom), keepdims=True) |
|
|
|
|
nonzero_indices = denom > tol |
|
|
|
|
|
|
|
|
|
xcorr = cross_correlate_masked(actual_sig, expected_sig, is_okay, is_okay, axes=tuple(range(actual_sig.ndim)),) |
|
|
|
|
lags = self.correlation_lags(len(expected_sig), dt) |
|
|
|
|
ncc = np.zeros_like(denom, dtype=np.float64) |
|
|
|
|
ncc[nonzero_indices] = numerator[nonzero_indices] / denom[nonzero_indices] |
|
|
|
|
np.clip(ncc, -1, 1, out=ncc) |
|
|
|
|
|
|
|
|
|
n_frames_max_delay = int(max_lag / dt) |
|
|
|
|
xcorr = xcorr[len(expected_sig) - 1: len(expected_sig) - 1 + n_frames_max_delay] |
|
|
|
|
lags = lags[:n_frames_max_delay] |
|
|
|
|
max_lag_samples = int(max_lag / dt) |
|
|
|
|
roi_ncc = ncc[len(expected_sig) - 1: len(expected_sig) - 1 + max_lag_samples] |
|
|
|
|
|
|
|
|
|
max_corr_index = np.argmax(xcorr) |
|
|
|
|
max_corr_index = np.argmax(roi_ncc) |
|
|
|
|
corr = roi_ncc[max_corr_index] |
|
|
|
|
lag = max_corr_index * dt |
|
|
|
|
|
|
|
|
|
lag, corr = lags[max_corr_index], xcorr[max_corr_index] |
|
|
|
|
return lag, corr |
|
|
|
|
|
|
|
|
|
|
|
|
|
|