diff --git a/selfdrive/locationd/lagd.py b/selfdrive/locationd/lagd.py index c42d2738ce..8a47f99a98 100755 --- a/selfdrive/locationd/lagd.py +++ b/selfdrive/locationd/lagd.py @@ -1,8 +1,7 @@ #!/usr/bin/env python3 import numpy as np from collections import deque - -from skimage.registration._masked_phase_cross_correlation import cross_correlate_masked +from functools import partial import cereal.messaging as messaging from cereal import car, log @@ -155,22 +154,68 @@ class LagEstimator: def correlation_lags(self, sig_len, dt): return np.arange(0, sig_len) * dt - def actuator_delay(self, expected_sig, actual_sig, is_okay, dt, max_lag=1.): - # masked (gated) normalized cross-correlation - # normalized, can be used for anything, like comparsion + def actuator_delay(self, expected_sig, actual_sig, mask, dt, max_lag=1.): + """ + References: + D. Padfield. "Masked FFT registration". In Proc. Computer Vision and + Pattern Recognition, pp. 2918-2925 (2010). + :DOI:`10.1109/CVPR.2010.5540032` + """ + + eps = np.finfo(np.float64).eps + expected_sig = np.asarray(expected_sig, dtype=np.float64) + actual_sig = np.asarray(actual_sig, dtype=np.float64) + + expected_sig[~mask] = 0.0 + actual_sig[~mask] = 0.0 + + rotated_expected_sig = expected_sig[::-1] + rotated_mask = mask[::-1] + + n = len(expected_sig) + len(actual_sig) - 1 + fft = partial(np.fft.fft, n=n) + + actual_sig_fft = fft(actual_sig) + rotated_expected_sig_fft = fft(rotated_expected_sig) + actual_mask_fft = fft(mask.astype(np.float64)) + rotated_mask_fft = fft(rotated_mask.astype(np.float64)) + + number_overlap_masked_samples = np.fft.ifft(rotated_mask_fft * actual_mask_fft).real + number_overlap_masked_samples[:] = np.round(number_overlap_masked_samples) + number_overlap_masked_samples[:] = np.fmax(number_overlap_masked_samples, eps) + masked_correlated_actual_fft = np.fft.ifft(rotated_mask_fft * actual_sig_fft).real + masked_correlated_expected_fft = np.fft.ifft(actual_mask_fft * rotated_expected_sig_fft).real + + numerator = np.fft.ifft(rotated_expected_sig_fft * actual_sig_fft).real + numerator -= masked_correlated_actual_fft * masked_correlated_expected_fft / number_overlap_masked_samples + + actual_squared_fft = fft(actual_sig ** 2) + actual_sig_denom = np.fft.ifft(rotated_mask_fft * actual_squared_fft).real + actual_sig_denom -= masked_correlated_actual_fft ** 2 / number_overlap_masked_samples + actual_sig_denom[:] = np.fmax(actual_sig_denom, 0.0) + + rotated_expected_squared_fft = fft(rotated_expected_sig ** 2) + expected_sig_denom = np.fft.ifft(actual_mask_fft * rotated_expected_squared_fft).real + expected_sig_denom -= masked_correlated_expected_fft ** 2 / number_overlap_masked_samples + expected_sig_denom[:] = np.fmax(expected_sig_denom, 0.0) + + denom = np.sqrt(actual_sig_denom * expected_sig_denom) - assert len(expected_sig) == len(actual_sig) + # zero-out samples with very small denominators + tol = 1e3 * eps * np.max(np.abs(denom), keepdims=True) + nonzero_indices = denom > tol - xcorr = cross_correlate_masked(actual_sig, expected_sig, is_okay, is_okay, axes=tuple(range(actual_sig.ndim)),) - lags = self.correlation_lags(len(expected_sig), dt) + ncc = np.zeros_like(denom, dtype=np.float64) + ncc[nonzero_indices] = numerator[nonzero_indices] / denom[nonzero_indices] + np.clip(ncc, -1, 1, out=ncc) - n_frames_max_delay = int(max_lag / dt) - xcorr = xcorr[len(expected_sig) - 1: len(expected_sig) - 1 + n_frames_max_delay] - lags = lags[:n_frames_max_delay] + max_lag_samples = int(max_lag / dt) + roi_ncc = ncc[len(expected_sig) - 1: len(expected_sig) - 1 + max_lag_samples] - max_corr_index = np.argmax(xcorr) + max_corr_index = np.argmax(roi_ncc) + corr = roi_ncc[max_corr_index] + lag = max_corr_index * dt - lag, corr = lags[max_corr_index], xcorr[max_corr_index] return lag, corr