Filet o Fish model (#34775)

* 690b01c3 seems ok

* correct temporal

* push

* inplace

* bs

* what thw

* is this wrong

* frames are skipped

* new models

* simplify decimation

* clean up

* clean up modelframe

* need attr

* lint

* 0

* use all samples

* this should break - Revert "use all samples"

This reverts commit 6c0d7943ac.

* add lc probs

* Revert "this should break - Revert "use all samples""

This reverts commit ca38c54333.

* Reapply "this should break - Revert "use all samples""

This reverts commit a3f0246f20.

* Revert "Reapply "this should break - Revert "use all samples"""

This reverts commit 7fd3d2a191.

---------

Co-authored-by: Comma Device <device@comma.ai>
pull/34778/head
ZwX1616 2 months ago committed by GitHub
parent 3f9437e249
commit 31076b818d
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
  1. 8
      selfdrive/modeld/constants.py
  2. 31
      selfdrive/modeld/modeld.py
  3. 9
      selfdrive/modeld/models/commonmodel.cc
  4. 5
      selfdrive/modeld/models/commonmodel.h
  5. 2
      selfdrive/modeld/models/commonmodel.pxd
  6. 4
      selfdrive/modeld/models/commonmodel_pyx.pyx
  7. 4
      selfdrive/modeld/models/driving_policy.onnx
  8. 2
      selfdrive/modeld/models/driving_vision.onnx

@ -14,8 +14,14 @@ class ModelConstants:
# model inputs constants
MODEL_FREQ = 20
HISTORY_FREQ = 5
HISTORY_LEN_SECONDS = 5
TEMPORAL_SKIP = MODEL_FREQ // HISTORY_FREQ
FULL_HISTORY_BUFFER_LEN = MODEL_FREQ * HISTORY_LEN_SECONDS
INPUT_HISTORY_BUFFER_LEN = HISTORY_FREQ * HISTORY_LEN_SECONDS
FEATURE_LEN = 512
FULL_HISTORY_BUFFER_LEN = 100
DESIRE_LEN = 8
TRAFFIC_CONVENTION_LEN = 2
LAT_PLANNER_STATE_LEN = 4

@ -56,16 +56,24 @@ class ModelState:
prev_desire: np.ndarray # for tracking the rising edge of the pulse
def __init__(self, context: CLContext):
self.frames = {'input_imgs': DrivingModelFrame(context), 'big_input_imgs': DrivingModelFrame(context)}
self.frames = {
'input_imgs': DrivingModelFrame(context, ModelConstants.TEMPORAL_SKIP),
'big_input_imgs': DrivingModelFrame(context, ModelConstants.TEMPORAL_SKIP)
}
self.prev_desire = np.zeros(ModelConstants.DESIRE_LEN, dtype=np.float32)
self.full_features_buffer = np.zeros((1, ModelConstants.FULL_HISTORY_BUFFER_LEN, ModelConstants.FEATURE_LEN), dtype=np.float32)
self.full_desire = np.zeros((1, ModelConstants.FULL_HISTORY_BUFFER_LEN, ModelConstants.DESIRE_LEN), dtype=np.float32)
self.full_prev_desired_curv = np.zeros((1, ModelConstants.FULL_HISTORY_BUFFER_LEN, ModelConstants.PREV_DESIRED_CURV_LEN), dtype=np.float32)
self.temporal_idxs = slice(-1-(ModelConstants.TEMPORAL_SKIP*(ModelConstants.INPUT_HISTORY_BUFFER_LEN-1)), None, ModelConstants.TEMPORAL_SKIP)
# policy inputs
self.numpy_inputs = {
'desire': np.zeros((1, ModelConstants.FULL_HISTORY_BUFFER_LEN, ModelConstants.DESIRE_LEN), dtype=np.float32),
'desire': np.zeros((1, ModelConstants.INPUT_HISTORY_BUFFER_LEN, ModelConstants.DESIRE_LEN), dtype=np.float32),
'traffic_convention': np.zeros((1, ModelConstants.TRAFFIC_CONVENTION_LEN), dtype=np.float32),
'lateral_control_params': np.zeros((1, ModelConstants.LATERAL_CONTROL_PARAMS_LEN), dtype=np.float32),
'prev_desired_curv': np.zeros((1, ModelConstants.FULL_HISTORY_BUFFER_LEN, ModelConstants.PREV_DESIRED_CURV_LEN), dtype=np.float32),
'features_buffer': np.zeros((1, ModelConstants.FULL_HISTORY_BUFFER_LEN, ModelConstants.FEATURE_LEN), dtype=np.float32),
'prev_desired_curv': np.zeros((1, ModelConstants.INPUT_HISTORY_BUFFER_LEN, ModelConstants.PREV_DESIRED_CURV_LEN), dtype=np.float32),
'features_buffer': np.zeros((1, ModelConstants.INPUT_HISTORY_BUFFER_LEN, ModelConstants.FEATURE_LEN), dtype=np.float32),
}
with open(VISION_METADATA_PATH, 'rb') as f:
@ -104,8 +112,9 @@ class ModelState:
new_desire = np.where(inputs['desire'] - self.prev_desire > .99, inputs['desire'], 0)
self.prev_desire[:] = inputs['desire']
self.numpy_inputs['desire'][0,:-1] = self.numpy_inputs['desire'][0,1:]
self.numpy_inputs['desire'][0,-1] = new_desire
self.full_desire[0,:-1] = self.full_desire[0,1:]
self.full_desire[0,-1] = new_desire
self.numpy_inputs['desire'][:] = self.full_desire.reshape((1,ModelConstants.INPUT_HISTORY_BUFFER_LEN,ModelConstants.TEMPORAL_SKIP,-1)).max(axis=2)
self.numpy_inputs['traffic_convention'][:] = inputs['traffic_convention']
self.numpy_inputs['lateral_control_params'][:] = inputs['lateral_control_params']
@ -128,15 +137,17 @@ class ModelState:
self.vision_output = self.vision_run(**self.vision_inputs).numpy().flatten()
vision_outputs_dict = self.parser.parse_vision_outputs(self.slice_outputs(self.vision_output, self.vision_output_slices))
self.numpy_inputs['features_buffer'][0,:-1] = self.numpy_inputs['features_buffer'][0,1:]
self.numpy_inputs['features_buffer'][0,-1] = vision_outputs_dict['hidden_state'][0, :]
self.full_features_buffer[0,:-1] = self.full_features_buffer[0,1:]
self.full_features_buffer[0,-1] = vision_outputs_dict['hidden_state'][0, :]
self.numpy_inputs['features_buffer'][:] = self.full_features_buffer[0, self.temporal_idxs]
self.policy_output = self.policy_run(**self.policy_inputs).numpy().flatten()
policy_outputs_dict = self.parser.parse_policy_outputs(self.slice_outputs(self.policy_output, self.policy_output_slices))
# TODO model only uses last value now
self.numpy_inputs['prev_desired_curv'][0,:-1] = self.numpy_inputs['prev_desired_curv'][0,1:]
self.numpy_inputs['prev_desired_curv'][0,-1,:] = policy_outputs_dict['desired_curvature'][0, :]
self.full_prev_desired_curv[0,:-1] = self.full_prev_desired_curv[0,1:]
self.full_prev_desired_curv[0,-1,:] = policy_outputs_dict['desired_curvature'][0, :]
self.numpy_inputs['prev_desired_curv'][:] = self.full_prev_desired_curv[0, self.temporal_idxs]
combined_outputs_dict = {**vision_outputs_dict, **policy_outputs_dict}
if SEND_RAW_PRED:

@ -5,11 +5,12 @@
#include "common/clutil.h"
DrivingModelFrame::DrivingModelFrame(cl_device_id device_id, cl_context context) : ModelFrame(device_id, context) {
DrivingModelFrame::DrivingModelFrame(cl_device_id device_id, cl_context context, int _temporal_skip) : ModelFrame(device_id, context) {
input_frames = std::make_unique<uint8_t[]>(buf_size);
temporal_skip = _temporal_skip;
input_frames_cl = CL_CHECK_ERR(clCreateBuffer(context, CL_MEM_READ_WRITE, buf_size, NULL, &err));
img_buffer_20hz_cl = CL_CHECK_ERR(clCreateBuffer(context, CL_MEM_READ_WRITE, 2*frame_size_bytes, NULL, &err));
region.origin = 1 * frame_size_bytes;
img_buffer_20hz_cl = CL_CHECK_ERR(clCreateBuffer(context, CL_MEM_READ_WRITE, (temporal_skip+1)*frame_size_bytes, NULL, &err));
region.origin = temporal_skip * frame_size_bytes;
region.size = frame_size_bytes;
last_img_cl = CL_CHECK_ERR(clCreateSubBuffer(img_buffer_20hz_cl, CL_MEM_READ_WRITE, CL_BUFFER_CREATE_TYPE_REGION, &region, &err));
@ -20,7 +21,7 @@ DrivingModelFrame::DrivingModelFrame(cl_device_id device_id, cl_context context)
cl_mem* DrivingModelFrame::prepare(cl_mem yuv_cl, int frame_width, int frame_height, int frame_stride, int frame_uv_offset, const mat3& projection) {
run_transform(yuv_cl, MODEL_WIDTH, MODEL_HEIGHT, frame_width, frame_height, frame_stride, frame_uv_offset, projection);
for (int i = 0; i < 1; i++) {
for (int i = 0; i < temporal_skip; i++) {
CL_CHECK(clEnqueueCopyBuffer(q, img_buffer_20hz_cl, img_buffer_20hz_cl, (i+1)*frame_size_bytes, i*frame_size_bytes, frame_size_bytes, 0, nullptr, nullptr));
}
loadyuv_queue(&loadyuv, q, y_cl, u_cl, v_cl, last_img_cl);

@ -64,20 +64,21 @@ protected:
class DrivingModelFrame : public ModelFrame {
public:
DrivingModelFrame(cl_device_id device_id, cl_context context);
DrivingModelFrame(cl_device_id device_id, cl_context context, int _temporal_skip);
~DrivingModelFrame();
cl_mem* prepare(cl_mem yuv_cl, int frame_width, int frame_height, int frame_stride, int frame_uv_offset, const mat3& projection);
const int MODEL_WIDTH = 512;
const int MODEL_HEIGHT = 256;
const int MODEL_FRAME_SIZE = MODEL_WIDTH * MODEL_HEIGHT * 3 / 2;
const int buf_size = MODEL_FRAME_SIZE * 2;
const int buf_size = MODEL_FRAME_SIZE * 2; // 2 frames are temporal_skip frames apart
const size_t frame_size_bytes = MODEL_FRAME_SIZE * sizeof(uint8_t);
private:
LoadYUVState loadyuv;
cl_mem img_buffer_20hz_cl, last_img_cl, input_frames_cl;
cl_buffer_region region;
int temporal_skip;
};
class MonitoringModelFrame : public ModelFrame {

@ -20,7 +20,7 @@ cdef extern from "selfdrive/modeld/models/commonmodel.h":
cppclass DrivingModelFrame:
int buf_size
DrivingModelFrame(cl_device_id, cl_context)
DrivingModelFrame(cl_device_id, cl_context, int)
cppclass MonitoringModelFrame:
int buf_size

@ -59,8 +59,8 @@ cdef class ModelFrame:
cdef class DrivingModelFrame(ModelFrame):
cdef cppDrivingModelFrame * _frame
def __cinit__(self, CLContext context):
self._frame = new cppDrivingModelFrame(context.device_id, context.context)
def __cinit__(self, CLContext context, int temporal_skip):
self._frame = new cppDrivingModelFrame(context.device_id, context.context, temporal_skip)
self.frame = <cppModelFrame*>(self._frame)
self.buf_size = self._frame.buf_size

@ -1,3 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:5cae3285c876804e649b14adadcfb8be79a9bd5a1b928113e37f1f08e25e9688
size 16581121
oid sha256:5fd38c3b4d465d14a8ed128f8b1b265bff1589d42f398faa678b93f25b3385dc
size 15966721

@ -1,3 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:29bbf79f9dfd7048c0013bb81e86d9b2979275b95ea1ed8a86d1a86a88695240
oid sha256:897f80d0388250f99bba69b6a8434560cc0fd83157cbeb0bc134c67fe4e64624
size 34882971

Loading…
Cancel
Save