|
|
|
@ -5,9 +5,9 @@ from cereal import log |
|
|
|
|
CAMERA_OFFSET = 0.06 # m from center car to camera |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def compute_path_pinv(l=50): |
|
|
|
|
def compute_path_pinv(length=50): |
|
|
|
|
deg = 3 |
|
|
|
|
x = np.arange(l*1.0) |
|
|
|
|
x = np.arange(length*1.0) |
|
|
|
|
X = np.vstack(tuple(x**n for n in range(deg, -1, -1))).T |
|
|
|
|
pinv = np.linalg.pinv(X) |
|
|
|
|
return pinv |
|
|
|
@ -21,37 +21,6 @@ def eval_poly(poly, x): |
|
|
|
|
return poly[3] + poly[2]*x + poly[1]*x**2 + poly[0]*x**3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def calc_d_poly(l_poly, r_poly, p_poly, l_prob, r_prob, lane_width, v_ego, l_std=0.05, r_std=0.05): |
|
|
|
|
# This will improve behaviour when lanes suddenly widen |
|
|
|
|
# these numbers were tested on 2000 segments and found to work well |
|
|
|
|
lane_width = min(4.0, lane_width) |
|
|
|
|
width_poly = l_poly - r_poly |
|
|
|
|
prob_mods = [] |
|
|
|
|
for t_check in [0.0, 1.5, 3.0]: |
|
|
|
|
width_at_t = eval_poly(width_poly, t_check * (v_ego + 7)) |
|
|
|
|
prob_mods.append(interp(width_at_t, [4.0, 5.0], [1.0, 0.0])) |
|
|
|
|
mod = min(prob_mods) |
|
|
|
|
l_prob = mod * l_prob |
|
|
|
|
r_prob = mod * r_prob |
|
|
|
|
|
|
|
|
|
# Remove reliance on uncertain lanelines |
|
|
|
|
# these numbers were tested on 2000 segments and found to work well |
|
|
|
|
l_std_mod = interp(l_std, [.15, .3], [1.0, 0.0]) |
|
|
|
|
l_prob = l_std_mod * l_prob |
|
|
|
|
r_std_mod = interp(r_std, [.15, .3], [1.0, 0.0]) |
|
|
|
|
r_prob = r_std_mod * r_prob |
|
|
|
|
|
|
|
|
|
path_from_left_lane = l_poly.copy() |
|
|
|
|
path_from_left_lane[3] -= lane_width / 2.0 |
|
|
|
|
path_from_right_lane = r_poly.copy() |
|
|
|
|
path_from_right_lane[3] += lane_width / 2.0 |
|
|
|
|
|
|
|
|
|
lr_prob = l_prob + r_prob - l_prob * r_prob |
|
|
|
|
|
|
|
|
|
d_poly_lane = (l_prob * path_from_left_lane + r_prob * path_from_right_lane) / (l_prob + r_prob + 0.0001) |
|
|
|
|
return lr_prob * d_poly_lane + (1.0 - lr_prob) * p_poly |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class LanePlanner: |
|
|
|
|
def __init__(self): |
|
|
|
|
self.l_poly = [0., 0., 0., 0.] |
|
|
|
@ -106,4 +75,32 @@ class LanePlanner: |
|
|
|
|
self.lane_width = self.lane_width_certainty * self.lane_width_estimate + \ |
|
|
|
|
(1 - self.lane_width_certainty) * speed_lane_width |
|
|
|
|
|
|
|
|
|
self.d_poly = calc_d_poly(self.l_poly, self.r_poly, self.p_poly, self.l_prob, self.r_prob, self.lane_width, v_ego, self.l_std, self.r_std) |
|
|
|
|
# This will improve behaviour when lanes suddenly widen |
|
|
|
|
# these numbers were tested on 2000 segments and found to work well |
|
|
|
|
l_prob, r_prob = self.l_prob, self.r_prob |
|
|
|
|
width_poly = self.l_poly - self.r_poly |
|
|
|
|
prob_mods = [] |
|
|
|
|
for t_check in [0.0, 1.5, 3.0]: |
|
|
|
|
width_at_t = eval_poly(width_poly, t_check * (v_ego + 7)) |
|
|
|
|
prob_mods.append(interp(width_at_t, [4.0, 5.0], [1.0, 0.0])) |
|
|
|
|
mod = min(prob_mods) |
|
|
|
|
l_prob *= mod |
|
|
|
|
r_prob *= mod |
|
|
|
|
|
|
|
|
|
# Remove reliance on uncertain lanelines |
|
|
|
|
# these numbers were tested on 2000 segments and found to work well |
|
|
|
|
l_std_mod = interp(self.l_std, [.15, .3], [1.0, 0.0]) |
|
|
|
|
r_std_mod = interp(self.r_std, [.15, .3], [1.0, 0.0]) |
|
|
|
|
l_prob *= l_std_mod |
|
|
|
|
r_prob *= r_std_mod |
|
|
|
|
|
|
|
|
|
clipped_lane_width = min(4.0, self.lane_width) |
|
|
|
|
path_from_left_lane = self.l_poly.copy() |
|
|
|
|
path_from_left_lane[3] -= clipped_lane_width / 2.0 |
|
|
|
|
path_from_right_lane = self.r_poly.copy() |
|
|
|
|
path_from_right_lane[3] += clipped_lane_width / 2.0 |
|
|
|
|
|
|
|
|
|
lr_prob = l_prob + r_prob - l_prob * r_prob |
|
|
|
|
|
|
|
|
|
d_poly_lane = (l_prob * path_from_left_lane + r_prob * path_from_right_lane) / (l_prob + r_prob + 0.0001) |
|
|
|
|
self.d_poly = lr_prob * d_poly_lane + (1.0 - lr_prob) * self.p_poly.copy() |
|
|
|
|