new plot timestamps

pull/32380/head
Shane Smiskol 1 year ago
parent 2d47613208
commit 4110e17c75
  1. 200
      tools/latencylogger/plot_timestamps.py

@ -3,6 +3,9 @@ import argparse
import json import json
import matplotlib.patches as mpatches import matplotlib.patches as mpatches
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
import seaborn as sns
from tqdm import tqdm
import numpy as np
import sys import sys
from collections import defaultdict from collections import defaultdict
@ -33,7 +36,7 @@ def plot(lr):
start_time = next(msg.logMonoTime for msg in lr) start_time = next(msg.logMonoTime for msg in lr)
for jmsg in timestamps: for jmsg in timestamps:
if len(times[PLOT_SERVICES[0]]) > 400: if len(times[PLOT_SERVICES[0]]) > 1400:
continue continue
# print() # print()
@ -107,7 +110,8 @@ def plot(lr):
status, pts = scatter.contains(event) status, pts = scatter.contains(event)
txt.set_visible(status) txt.set_visible(status)
if status: if status:
txt.set_text(points['labels'][pts['ind'][0]]) pt_idx = pts['ind'][0]
txt.set_text(f"{points['labels'][pt_idx]} ({points['x'][pt_idx]:0.2f} ms)")
txt.set_position((event.xdata, event.ydata + 1)) txt.set_position((event.xdata, event.ydata + 1))
event.canvas.draw() event.canvas.draw()
@ -118,6 +122,179 @@ def plot(lr):
return times, points return times, points
def plot_dist(lr, poll):
lr = list(lr)
# carState_service_times = []
# prev_time = None
# for msg in lr:
# if msg.which() == 'carState':
# if prev_time is not None:
# carState_service_times.append((msg.logMonoTime - prev_time) * 1e-6)
# prev_time = msg.logMonoTime
# logMonoTime is from logmessaged, not when the timestamp was created. some messages are out of order
timestamps = [json.loads(msg.logMessage) for msg in tqdm(lr) if msg.which() == 'logMessage' and '"timestamp"' in msg.logMessage]
timestamps = sorted(timestamps, key=lambda m: float(m['msg']['timestamp']['time']))
timestamps = [m for m in tqdm(timestamps) if m['ctx']['daemon'] in PLOT_SERVICES]
initialized = False
ready = False
start_card_loop = None
received_can = None
state_updated = None
sent_carState = None
state_published = None
sent_carControl = None
card_e2e_loop_times = []
card_carInterface_update_times = []
carState_recv_times = []
carControl_recv_times = []
carState_to_carControl_times = []
card_controls_times = []
card_loop_times = []
for jmsg in tqdm(timestamps):
time = int(jmsg['msg']['timestamp']['time'])
service = jmsg['ctx']['daemon']
event = jmsg['msg']['timestamp']['event']
if event == 'Initialized' and service == 'card':
initialized = True
if initialized and event == 'Start card':
ready = True
if not ready:
continue
if event == 'Start card' and service == 'card':
if start_card_loop is not None:
card_e2e_loop_times.append((time - start_card_loop) * 1e-6)
start_card_loop = time
elif event == 'Received can' and service == 'card':
# measuring from this time does not include wait time for can packet, so this measures true card loop time taken
received_can = time
elif event == 'State updated' and service == 'card':
state_updated = time
card_carInterface_update_times.append((time - received_can) * 1e-6)
elif event == 'Sent carState' and service == 'card':
sent_carState = time
elif event == 'Got carState' and service == 'controlsd':
# TODO why none
if sent_carState is not None:
carState_recv_times.append((time - sent_carState) * 1e-6)
elif event == 'Logs published' and service == 'controlsd':
sent_carControl = time
elif event == 'State published' and service == 'card':
state_published = time
if poll: # only makes sense when polling
# from carState sent to carControl received
carControl_recv_times.append((time - sent_carControl) * 1e-6)
carState_to_carControl_times.append((time - sent_carState) * 1e-6)
elif event == 'Controls updated' and service == 'card':
card_controls_times.append((time - state_published) * 1e-6)
card_loop_times.append((time - received_can) * 1e-6) # this is time NOT spent waiting for can
fig, ax = plt.subplots(3)
# plt.figure()
# plt.title('card end to end loop times')
# sns.distplot(card_e2e_loop_times)
# plt.xlabel('ms')
# plt.figure()
# plt.title('card loop times (timestamps)')
# sns.distplot(card_loop_times)
# plt.xlabel('ms')
#
# plt.figure()
# plt.title('card CI.update times')
# sns.distplot(card_carInterface_update)
# plt.xlabel('ms')
#
# plt.figure()
# plt.title('card loop times (logMonoTime)')
# sns.distplot(carState_service_times)
# plt.xlabel('ms')
#
# plt.figure()
# plt.title('carState to controlsd times')
# sns.distplot(carState_recv_times)
# plt.xlabel('ms')
#
# plt.figure()
# plt.title('carState to carControl times1')
# sns.distplot(carState_to_carControl_times, bins=50)
# plt.xlabel('ms')
#
# plt.figure()
# plt.title('carState to carControl times2')
# sns.displot(carState_to_carControl_times, bins=50, kind='hist', kde=True)
# plt.xlabel('ms')
# plt.figure()
# ax.set_title('carState to carControl times3')
fig.suptitle('Polling/waiting on carControl from controlsd' if poll else 'Not polling on carControl')
ax[0].set_title('cereal communication times')
ax[0].set_xlim(0, 16)
sns.histplot(carState_recv_times, kde=True, ax=ax[0],
label=f'carState->controlsd recv time: \n minmax: {min(carState_recv_times):0.2f}, {max(carState_recv_times):>5.2f}, ' +
f'med: {np.median(carState_recv_times):0.2f}, mean: {np.mean(carState_recv_times):0.2f}, ' +
f'95th: {np.percentile(carState_recv_times, 95):0.2f}')
if poll:
sns.histplot(carControl_recv_times, kde=True, ax=ax[0],
label=f'carControl->card recv time (polling on carControl): \n minmax: {min(carControl_recv_times):0.2f}, {max(carControl_recv_times):>5.2f}, ' +
f'med: {np.median(carControl_recv_times):0.2f}, mean: {np.mean(carControl_recv_times):0.2f}, ' +
f'95th: {np.percentile(carControl_recv_times, 95):0.2f}')
ax[0].legend()
ax[1].set_title('card loop times')
ax[1].set_xlim(0, 16)
if poll:
sns.histplot(carState_to_carControl_times, kde=True, ax=ax[1],
label=f'waiting on carControl (polling on carControl): \n minmax: {min(carState_to_carControl_times):0.2f}, {max(carState_to_carControl_times):>5.2f}, ' +
f'med: {np.median(carState_to_carControl_times):0.2f}, mean: {np.mean(carState_to_carControl_times):0.2f}, ' +
f'95th: {np.percentile(carState_to_carControl_times, 95):0.2f}')
sns.histplot(card_controls_times, kde=True, ax=ax[1], label=f'CI.apply(): \n minmax: {min(card_controls_times):0.2f}, {max(card_controls_times):>6.2f}, ' +
f'med: {np.median(card_controls_times):0.2f}, mean: {np.mean(card_controls_times):0.2f}, ' +
f'95th: {np.percentile(card_controls_times, 95):0.2f}')
sns.histplot(card_carInterface_update_times, kde=True, ax=ax[1],
label=f'CI.update(): \n minmax: {min(card_carInterface_update_times):0.2f}, {max(card_carInterface_update_times):>5.2f}, ' +
f'med: {np.median(card_carInterface_update_times):0.2f}, mean: {np.mean(card_carInterface_update_times):0.2f}, ' +
f'95th: {np.percentile(card_carInterface_update_times, 95):0.2f}')
ax[1].legend()
ax[2].set_title('total card loop time')
ax[2].set_xlim(0, 16)
sns.histplot(card_loop_times, kde=True, ax=ax[2], label=f'entire card loop time: \n minmax: {min(card_loop_times):0.2f}, {max(card_loop_times):>5.2f}, ' +
f'med: {np.median(card_loop_times):0.2f}, mean: {np.mean(card_loop_times):0.2f}, ' +
f'95th: {np.percentile(card_loop_times, 95):0.2f}')
ax[2].legend()
ax[2].set_xlabel('ms')
#
# plt.figure()
# plt.title('card CI.apply (controls) times')
# sns.distplot(card_controls_times)
# plt.xlabel('ms')
return timestamps, card_loop_times, carState_recv_times, carState_to_carControl_times
if __name__ == "__main__": if __name__ == "__main__":
# parser = argparse.ArgumentParser(description="A tool for analyzing openpilot's end-to-end latency", # parser = argparse.ArgumentParser(description="A tool for analyzing openpilot's end-to-end latency",
# formatter_class=argparse.ArgumentDefaultsHelpFormatter) # formatter_class=argparse.ArgumentDefaultsHelpFormatter)
@ -131,9 +308,24 @@ if __name__ == "__main__":
# r = DEMO_ROUTE if args.demo else args.route_or_segment_name.strip() # r = DEMO_ROUTE if args.demo else args.route_or_segment_name.strip()
# lr = LogReader(r, sort_by_time=True) # lr = LogReader(r, sort_by_time=True)
lr = LogReader('08e4c2a99df165b1/00000016--c3a4ca99ec/0', sort_by_time=True) # normal # lr = LogReader('08e4c2a99df165b1/00000016--c3a4ca99ec/0', sort_by_time=True) # normal
# lr = LogReader('08e4c2a99df165b1/00000017--e2d24ab118/0', sort_by_time=True) # polls on carControl # lr = LogReader('08e4c2a99df165b1/00000017--e2d24ab118/0', sort_by_time=True) # polls on carControl
# lr = LogReader('08e4c2a99df165b1/00000018--cf65e47c24/0', sort_by_time=True) # polls on carControl, sends it earlier # lr = LogReader('08e4c2a99df165b1/00000018--cf65e47c24/0', sort_by_time=True) # polls on carControl, sends it earlier
# lr = LogReader('08e4c2a99df165b1/00000019--e73e3ab4df/0', sort_by_time=True) # polls on carControl, more logging # lr = LogReader('08e4c2a99df165b1/00000019--e73e3ab4df/0', sort_by_time=True) # polls on carControl, more logging
times, points = plot(lr) # lr = LogReader('08e4c2a99df165b1/0000002c--b40eb82d6d/0:-1', sort_by_time=True) # polls on carControl
# lr = LogReader('08e4c2a99df165b1/0000002d--ccebe8b617/0:1', sort_by_time=True) # no poll on carControl
# lr = LogReader('08e4c2a99df165b1/0000002e--fd98f6603b/:7', sort_by_time=True) # no poll on carControl (no timestamps)
POLL = False # carControl polling or not
if POLL:
# lr = LogReader('08e4c2a99df165b1/00000032--2c1d57d894/0', sort_by_time=True) # carControl poll, w/ reduced timestamps
# lr = LogReader('08e4c2a99df165b1/00000033--1e2720e55b/0', sort_by_time=True) # carControl poll, w/ poll flag (FINAL)
lr = LogReader('08e4c2a99df165b1/00000036--4eb8126f04', sort_by_time=True) # carControl poll, w/ poll flag & Received can (FINAL v2)
else:
# lr = LogReader('08e4c2a99df165b1/00000031--f6f38d1ccf/0', sort_by_time=True) # no carControl poll, w/ reduced timestamps
# lr = LogReader('08e4c2a99df165b1/00000035--0abfde9c4a/0', sort_by_time=True) # no carControl poll, w/ poll flag (FINAL)
lr = LogReader('08e4c2a99df165b1/00000037--f6294815ac', sort_by_time=True) # no carControl poll, w/ poll flag & Received can (FINAL v2)
timestamps = plot_dist(lr, poll=POLL)
# times, points = plot(lr)

Loading…
Cancel
Save