|
|
|
@ -99,7 +99,7 @@ void fill_sigmoid(const float *input, float *output, int len, int stride) { |
|
|
|
|
|
|
|
|
|
void fill_lead(cereal::ModelDataV2::LeadDataV3::Builder lead, const ModelDataRawLeads &leads, int t_idx, float prob_t) { |
|
|
|
|
std::array<float, LEAD_TRAJ_LEN> lead_t = {0.0, 2.0, 4.0, 6.0, 8.0, 10.0}; |
|
|
|
|
auto best_prediction = leads.get_best_prediction(t_idx); |
|
|
|
|
const auto &best_prediction = leads.get_best_prediction(t_idx); |
|
|
|
|
lead.setProb(sigmoid(leads.prob[t_idx])); |
|
|
|
|
lead.setProbTime(prob_t); |
|
|
|
|
std::array<float, LEAD_TRAJ_LEN> lead_x, lead_y, lead_v, lead_a; |
|
|
|
@ -288,7 +288,7 @@ void fill_road_edges(cereal::ModelDataV2::Builder &framed, const std::array<floa |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void fill_model(cereal::ModelDataV2::Builder &framed, const ModelDataRaw &net_outputs) { |
|
|
|
|
auto best_plan = net_outputs.plans->get_best_prediction(); |
|
|
|
|
const auto &best_plan = net_outputs.plans->get_best_prediction(); |
|
|
|
|
std::array<float, TRAJECTORY_SIZE> plan_t; |
|
|
|
|
std::fill_n(plan_t.data(), plan_t.size(), NAN); |
|
|
|
|
plan_t[0] = 0.0; |
|
|
|
|