diff --git a/selfdrive/locationd/kalman/live_kf.py b/selfdrive/locationd/kalman/live_kf.py index 2671675a18..7cd1cbc96d 100755 --- a/selfdrive/locationd/kalman/live_kf.py +++ b/selfdrive/locationd/kalman/live_kf.py @@ -38,7 +38,6 @@ class LiveKalman(): (0.005/100)**2, (0.005/100)**2, (0.005/100)**2, (0.02/100)**2, 3**2, 3**2, 3**2, - 0.001**2, (0.05/60)**2, (0.05/60)**2, (0.05/60)**2]) self.dim_state = initial_x.shape[0] diff --git a/selfdrive/locationd/kalman/live_model.py b/selfdrive/locationd/kalman/live_model.py index 5e13a2790d..94a01fc251 100644 --- a/selfdrive/locationd/kalman/live_model.py +++ b/selfdrive/locationd/kalman/live_model.py @@ -60,7 +60,7 @@ def gen_model(name, dim_state, dim_state_err, maha_test_kinds): q = state[States.ECEF_ORIENTATION,:] v = state[States.ECEF_VELOCITY,:] vx, vy, vz = v - omega = state[States.GYRO_BIAS,:] + omega = state[States.ANGULAR_VELOCITY,:] vroll, vpitch, vyaw = omega roll_bias, pitch_bias, yaw_bias = state[States.GYRO_BIAS,:] odo_scale = state[16,:] @@ -111,8 +111,8 @@ def gen_model(name, dim_state, dim_state_err, maha_test_kinds): # Observation matrix modifier H_mod_sym = sp.Matrix(np.zeros((dim_state, dim_state_err))) H_mod_sym[0:3, 0:3] = np.eye(3) - H_mod_sym[3:7,3:6] = 0.5*quat_matrix_r(state[3:7])[:,1:] + H_mod_sym[7:, 6:] = np.eye(dim_state-7) # these error functions are defined so that say there # is a nominal x and true x: @@ -125,13 +125,15 @@ def gen_model(name, dim_state, dim_state_err, maha_test_kinds): err_function_sym = sp.Matrix(np.zeros((dim_state,1))) delta_quat = sp.Matrix(np.ones((4))) delta_quat[1:,:] = sp.Matrix(0.5*delta_x[3:6,:]) - err_function_sym[3:7,0] = quat_matrix_r(nom_x[3:7,0])*delta_quat err_function_sym[0:3,:] = sp.Matrix(nom_x[0:3,:] + delta_x[0:3,:]) + err_function_sym[3:7,0] = quat_matrix_r(nom_x[3:7,0])*delta_quat + err_function_sym[7:,:] = sp.Matrix(nom_x[7:,:] + delta_x[6:,:]) inv_err_function_sym = sp.Matrix(np.zeros((dim_state_err,1))) inv_err_function_sym[0:3,0] = sp.Matrix(-nom_x[0:3,0] + true_x[0:3,0]) delta_quat = quat_matrix_r(nom_x[3:7,0]).T*true_x[3:7,0] inv_err_function_sym[3:6,0] = sp.Matrix(2*delta_quat[1:]) + inv_err_function_sym[6:,0] = sp.Matrix(-nom_x[7:,0] + true_x[7:,0]) eskf_params = [[err_function_sym, nom_x, delta_x], [inv_err_function_sym, nom_x, true_x],