locationd: make pose_kf inherit from KalmanFilter (#34982)

* Read message not json for initial state

* Delete lines

* Fix param
pull/34983/head
Kacper Rączy 3 weeks ago committed by GitHub
parent 1e3f6599bd
commit 490c53e2dc
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
  1. 20
      selfdrive/locationd/locationd.py
  2. 41
      selfdrive/locationd/models/pose_kf.py

@ -1,6 +1,5 @@
#!/usr/bin/env python3
import os
import json
import time
import capnp
import numpy as np
@ -65,7 +64,7 @@ class LocationEstimator:
self.observation_errors = {kind: np.zeros(3, dtype=np.float32) for kind in obs_kinds}
def reset(self, t: float, x_initial: np.ndarray = PoseKalman.initial_x, P_initial: np.ndarray = PoseKalman.initial_P):
self.kf.reset(t, x_initial, P_initial)
self.kf.init_state(x_initial, covs=P_initial, filter_time=t)
def _validate_sensor_source(self, source: log.SensorEventData.SensorSource):
# some segments have two IMUs, ignore the second one
@ -186,8 +185,8 @@ class LocationEstimator:
rot_device_noise = rot_device_std ** 2
trans_device_noise = trans_device_std ** 2
cam_odo_rot_res = self.kf.predict_and_observe(t, ObservationKind.CAMERA_ODO_ROTATION, rot_device, rot_device_noise)
cam_odo_trans_res = self.kf.predict_and_observe(t, ObservationKind.CAMERA_ODO_TRANSLATION, trans_device, trans_device_noise)
cam_odo_rot_res = self.kf.predict_and_observe(t, ObservationKind.CAMERA_ODO_ROTATION, rot_device, np.array([np.diag(rot_device_noise)]))
cam_odo_trans_res = self.kf.predict_and_observe(t, ObservationKind.CAMERA_ODO_TRANSLATION, trans_device, np.array([np.diag(trans_device_noise)]))
self.camodo_yawrate_distribution = np.array([rot_device[2], rot_device_std[2]])
if cam_odo_rot_res is not None:
_, new_x, _, new_P, _, _, (cam_odo_rot_err,), _, _ = cam_odo_rot_res
@ -278,12 +277,13 @@ def main():
input_invalid_threshold = {s: input_invalid_limit[s] - 0.5 for s in critcal_services}
input_invalid_decay = {s: calculate_invalid_input_decay(input_invalid_limit[s], INPUT_INVALID_RECOVERY, SERVICE_LIST[s].frequency) for s in critcal_services}
initial_pose = params.get("LocationFilterInitialState")
if initial_pose is not None:
initial_pose = json.loads(initial_pose)
x_initial = np.array(initial_pose["x"], dtype=np.float64)
P_initial = np.diag(np.array(initial_pose["P"], dtype=np.float64))
estimator.reset(None, x_initial, P_initial)
initial_pose_data = params.get("LocationFilterInitialState")
if initial_pose_data is not None:
with log.Event.from_bytes(initial_pose_data) as lp_msg:
filter_state = lp_msg.livePose.debugFilterState
x_initial = np.array(filter_state.value, dtype=np.float64) if len(filter_state.value) != 0 else PoseKalman.initial_x
P_initial = np.diag(np.array(filter_state.std, dtype=np.float64)) if len(filter_state.std) != 0 else PoseKalman.initial_P
estimator.reset(None, x_initial, P_initial)
while True:
sm.update()

@ -5,6 +5,8 @@ import numpy as np
from openpilot.selfdrive.locationd.models.constants import ObservationKind
from rednose.helpers.kalmanfilter import KalmanFilter
if __name__=="__main__":
import sympy as sp
from rednose.helpers.ekf_sym import gen_code
@ -24,7 +26,7 @@ class States:
ACCEL_BIAS = slice(15, 18) # Acceletometer bias in m/s**2
class PoseKalman:
class PoseKalman(KalmanFilter):
name = "pose"
# state
@ -50,10 +52,10 @@ class PoseKalman:
3**2, 3**2, 3**2,
0.005**2, 0.005**2, 0.005**2])
obs_noise = {ObservationKind.PHONE_GYRO: np.array([0.025**2, 0.025**2, 0.025**2]),
ObservationKind.PHONE_ACCEL: np.array([.5**2, .5**2, .5**2]),
ObservationKind.CAMERA_ODO_TRANSLATION: np.array([0.5**2, 0.5**2, 0.5**2]),
ObservationKind.CAMERA_ODO_ROTATION: np.array([0.05**2, 0.05**2, 0.05**2])}
obs_noise = {ObservationKind.PHONE_GYRO: np.diag([0.025**2, 0.025**2, 0.025**2]),
ObservationKind.PHONE_ACCEL: np.diag([.5**2, .5**2, .5**2]),
ObservationKind.CAMERA_ODO_TRANSLATION: np.diag([0.5**2, 0.5**2, 0.5**2]),
ObservationKind.CAMERA_ODO_ROTATION: np.diag([0.05**2, 0.05**2, 0.05**2])}
@staticmethod
def generate_code(generated_dir):
@ -103,35 +105,6 @@ class PoseKalman:
self.filter = EKF_sym_pyx(generated_dir, self.name, PoseKalman.Q, PoseKalman.initial_x, PoseKalman.initial_P,
dim_state, dim_state_err, max_rewind_age=max_rewind_age)
@property
def x(self):
return self.filter.state()
@property
def P(self):
return self.filter.covs()
@property
def t(self):
return self.filter.get_filter_time()
def predict_and_observe(self, t, kind, data, obs_noise=None):
data = np.atleast_2d(data)
if obs_noise is None:
obs_noise = self.obs_noise[kind]
R = self._get_R(len(data), obs_noise)
return self.filter.predict_and_update_batch(t, kind, data, R)
def reset(self, t, x_init, P_init):
self.filter.init_state(x_init, P_init, t)
def _get_R(self, n, obs_noise):
dim = obs_noise.shape[0]
R = np.zeros((n, dim, dim))
for i in range(n):
R[i, :, :] = np.diag(obs_noise)
return R
if __name__ == "__main__":
generated_dir = sys.argv[2]

Loading…
Cancel
Save