|
|
|
@ -21,7 +21,7 @@ def eval_poly(poly, x): |
|
|
|
|
return poly[3] + poly[2]*x + poly[1]*x**2 + poly[0]*x**3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def calc_d_poly(l_poly, r_poly, p_poly, l_prob, r_prob, lane_width, v_ego): |
|
|
|
|
def calc_d_poly(l_poly, r_poly, p_poly, l_prob, r_prob, lane_width, v_ego, l_std=0.05, r_std=0.05): |
|
|
|
|
# This will improve behaviour when lanes suddenly widen |
|
|
|
|
# these numbers were tested on 2000segments and found to work well |
|
|
|
|
lane_width = min(4.0, lane_width) |
|
|
|
@ -34,6 +34,13 @@ def calc_d_poly(l_poly, r_poly, p_poly, l_prob, r_prob, lane_width, v_ego): |
|
|
|
|
l_prob = mod * l_prob |
|
|
|
|
r_prob = mod * r_prob |
|
|
|
|
|
|
|
|
|
# Remove reliance on uncertain lanelines |
|
|
|
|
# these numbers were tested on 2000segments and found to work well |
|
|
|
|
l_std_mod = interp(l_std, [.15, .3], [1.0, 0.0]) |
|
|
|
|
l_prob = l_std_mod * l_prob |
|
|
|
|
r_std_mod = interp(r_std, [.15, .3], [1.0, 0.0]) |
|
|
|
|
r_prob = r_std_mod * r_prob |
|
|
|
|
|
|
|
|
|
path_from_left_lane = l_poly.copy() |
|
|
|
|
path_from_left_lane[3] -= lane_width / 2.0 |
|
|
|
|
path_from_right_lane = r_poly.copy() |
|
|
|
@ -59,6 +66,9 @@ class LanePlanner(): |
|
|
|
|
self.l_prob = 0. |
|
|
|
|
self.r_prob = 0. |
|
|
|
|
|
|
|
|
|
self.l_std = 0. |
|
|
|
|
self.r_std = 0. |
|
|
|
|
|
|
|
|
|
self.l_lane_change_prob = 0. |
|
|
|
|
self.r_lane_change_prob = 0. |
|
|
|
|
|
|
|
|
@ -68,7 +78,9 @@ class LanePlanner(): |
|
|
|
|
def parse_model(self, md): |
|
|
|
|
if len(md.leftLane.poly): |
|
|
|
|
self.l_poly = np.array(md.leftLane.poly) |
|
|
|
|
self.l_std = float(md.leftLane.std) |
|
|
|
|
self.r_poly = np.array(md.rightLane.poly) |
|
|
|
|
self.r_std = float(md.rightLane.std) |
|
|
|
|
self.p_poly = np.array(md.path.poly) |
|
|
|
|
else: |
|
|
|
|
self.l_poly = model_polyfit(md.leftLane.points, self._path_pinv) # left line |
|
|
|
@ -94,7 +106,7 @@ class LanePlanner(): |
|
|
|
|
self.lane_width = self.lane_width_certainty * self.lane_width_estimate + \ |
|
|
|
|
(1 - self.lane_width_certainty) * speed_lane_width |
|
|
|
|
|
|
|
|
|
self.d_poly = calc_d_poly(self.l_poly, self.r_poly, self.p_poly, self.l_prob, self.r_prob, self.lane_width, v_ego) |
|
|
|
|
self.d_poly = calc_d_poly(self.l_poly, self.r_poly, self.p_poly, self.l_prob, self.r_prob, self.lane_width, v_ego, self.l_std, self.r_std) |
|
|
|
|
|
|
|
|
|
def update(self, v_ego, md): |
|
|
|
|
self.parse_model(md) |
|
|
|
|