loc_local is dead

old-commit-hash: 8d4dda391c
commatwo_master
Willem Melching 5 years ago
parent 8611b1b648
commit 4bfe88a31a
  1. 128
      selfdrive/locationd/kalman/loc_local_kf.py
  2. 80
      selfdrive/locationd/kalman/loc_local_model.py

@ -1,128 +0,0 @@
#!/usr/bin/env python3
import numpy as np
from selfdrive.locationd.kalman import loc_local_model
from selfdrive.locationd.kalman.kalman_helpers import ObservationKind
from selfdrive.locationd.kalman.ekf_sym import EKF_sym
class States():
VELOCITY = slice(0,3) # device frame velocity in m/s
ANGULAR_VELOCITY = slice(3, 6) # roll, pitch and yaw rates in device frame in radians/s
GYRO_BIAS = slice(6, 9) # roll, pitch and yaw biases
ODO_SCALE = slice(9, 10) # odometer scale
ACCELERATION = slice(10, 13) # Acceleration in device frame in m/s**2
class LocLocalKalman():
def __init__(self):
x_initial = np.array([0, 0, 0,
0, 0, 0,
0, 0, 0,
1,
0, 0, 0])
# state covariance
P_initial = np.diag([10**2, 10**2, 10**2,
1**2, 1**2, 1**2,
0.05**2, 0.05**2, 0.05**2,
0.02**2,
1**2, 1**2, 1**2])
# process noise
Q = np.diag([0.0**2, 0.0**2, 0.0**2,
.01**2, .01**2, .01**2,
(0.005/100)**2, (0.005/100)**2, (0.005/100)**2,
(0.02/100)**2,
3**2, 3**2, 3**2])
self.obs_noise = {ObservationKind.ODOMETRIC_SPEED: np.atleast_2d(0.2**2),
ObservationKind.PHONE_GYRO: np.diag([0.025**2, 0.025**2, 0.025**2])}
# MSCKF stuff
self.dim_state = len(x_initial)
self.dim_main = self.dim_state
name = 'loc_local'
loc_local_model.gen_model(name, self.dim_state)
# init filter
self.filter = EKF_sym(name, Q, x_initial, P_initial, self.dim_main, self.dim_main)
@property
def x(self):
return self.filter.state()
@property
def t(self):
return self.filter.filter_time
@property
def P(self):
return self.filter.covs()
def predict(self, t):
if self.t:
# Does NOT modify filter state
return self.filter._predict(self.x, self.P, t - self.t)[0]
else:
raise RuntimeError("Request predict on filter with uninitialized time")
def rts_smooth(self, estimates):
return self.filter.rts_smooth(estimates, norm_quats=True)
def init_state(self, state, covs_diag=None, covs=None, filter_time=None):
if covs_diag is not None:
P = np.diag(covs_diag)
elif covs is not None:
P = covs
else:
P = self.filter.covs()
self.filter.init_state(state, P, filter_time)
def predict_and_observe(self, t, kind, data):
if len(data) > 0:
data = np.atleast_2d(data)
if kind == ObservationKind.CAMERA_ODO_TRANSLATION:
r = self.predict_and_update_odo_trans(data, t, kind)
elif kind == ObservationKind.CAMERA_ODO_ROTATION:
r = self.predict_and_update_odo_rot(data, t, kind)
elif kind == ObservationKind.ODOMETRIC_SPEED:
r = self.predict_and_update_odo_speed(data, t, kind)
else:
r = self.filter.predict_and_update_batch(t, kind, data, self.get_R(kind, len(data)))
return r
def get_R(self, kind, n):
obs_noise = self.obs_noise[kind]
dim = obs_noise.shape[0]
R = np.zeros((n, dim, dim))
for i in range(n):
R[i,:,:] = obs_noise
return R
def predict_and_update_odo_speed(self, speed, t, kind):
z = np.array(speed)
R = np.zeros((len(speed), 1, 1))
for i, _ in enumerate(z):
R[i,:,:] = np.diag([0.2**2])
return self.filter.predict_and_update_batch(t, kind, z, R)
def predict_and_update_odo_trans(self, trans, t, kind):
z = trans[:,:3]
R = np.zeros((len(trans), 3, 3))
for i, _ in enumerate(z):
R[i,:,:] = np.diag(trans[i,3:]**2)
return self.filter.predict_and_update_batch(t, kind, z, R)
def predict_and_update_odo_rot(self, rot, t, kind):
z = rot[:,:3]
R = np.zeros((len(rot), 3, 3))
for i, _ in enumerate(z):
R[i,:,:] = np.diag(rot[i,3:]**2)
return self.filter.predict_and_update_batch(t, kind, z, R)
if __name__ == "__main__":
LocLocalKalman()

@ -1,80 +0,0 @@
import numpy as np
import sympy as sp
import os
from selfdrive.locationd.kalman.kalman_helpers import ObservationKind
from selfdrive.locationd.kalman.ekf_sym import gen_code
def gen_model(name, dim_state):
# check if rebuild is needed
try:
dir_path = os.path.dirname(__file__)
deps = [dir_path + '/' + 'ekf_c.c',
dir_path + '/' + 'ekf_sym.py',
dir_path + '/' + 'loc_local_model.py',
dir_path + '/' + 'loc_local_kf.py']
outs = [dir_path + '/' + name + '.o',
dir_path + '/' + name + '.so',
dir_path + '/' + name + '.cpp']
out_times = list(map(os.path.getmtime, outs))
dep_times = list(map(os.path.getmtime, deps))
rebuild = os.getenv("REBUILD", False)
if min(out_times) > max(dep_times) and not rebuild:
return
list(map(os.remove, outs))
except OSError:
pass
# make functions and jacobians with sympy
# state variables
state_sym = sp.MatrixSymbol('state', dim_state, 1)
state = sp.Matrix(state_sym)
v = state[0:3,:]
omega = state[3:6,:]
vroll, vpitch, vyaw = omega
vx, vy, vz = v
roll_bias, pitch_bias, yaw_bias = state[6:9,:]
odo_scale = state[9,:]
accel = state[10:13,:]
dt = sp.Symbol('dt')
# Time derivative of the state as a function of state
state_dot = sp.Matrix(np.zeros((dim_state, 1)))
state_dot[:3,:] = accel
# Basic descretization, 1st order intergrator
# Can be pretty bad if dt is big
f_sym = sp.Matrix(state + dt*state_dot)
#
# Observation functions
#
# extra args
#imu_rot = euler_rotate(*imu_angles)
#h_gyro_sym = imu_rot*sp.Matrix([vroll + roll_bias,
# vpitch + pitch_bias,
# vyaw + yaw_bias])
h_gyro_sym = sp.Matrix([vroll + roll_bias,
vpitch + pitch_bias,
vyaw + yaw_bias])
speed = vx**2 + vy**2 + vz**2
h_speed_sym = sp.Matrix([sp.sqrt(speed)*odo_scale])
h_relative_motion = sp.Matrix(v)
h_phone_rot_sym = sp.Matrix([vroll,
vpitch,
vyaw])
obs_eqs = [[h_speed_sym, ObservationKind.ODOMETRIC_SPEED, None],
[h_gyro_sym, ObservationKind.PHONE_GYRO, None],
[h_phone_rot_sym, ObservationKind.NO_ROT, None],
[h_relative_motion, ObservationKind.CAMERA_ODO_TRANSLATION, None],
[h_phone_rot_sym, ObservationKind.CAMERA_ODO_ROTATION, None]]
gen_code(name, f_sym, dt, state_sym, obs_eqs, dim_state, dim_state)
Loading…
Cancel
Save