(New) Lemon Pie Model 🍋 (#30209)

* 6f6e3749-1b7c-42e8-a33b-03929b7fc476/700

* oops deleted too much

* 1b4308b7-a659-4ebd-b4c6-c81c1c3890f8/700

* 1be192f3-f407-4217-9757-78b9ad92750a/700

* remove some todos

* more cleanup in lat planner

* vego > min_speed

* regen and update process replay refs

* update model replay ref

* update model replay ref commit again

* Revert "update model replay ref commit again"

This reverts commit 922cb796b8.

* update again

* bump cereal
pull/30365/head
YassineYousfi 2 years ago committed by GitHub
parent ac471036fb
commit 4c2bd853e4
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 2
      cereal
  2. 99
      selfdrive/controls/lib/lateral_planner.py
  3. 4
      selfdrive/controls/plannerd.py
  4. 2
      selfdrive/modeld/constants.py
  5. 5
      selfdrive/modeld/fill_model_msg.py
  6. 5
      selfdrive/modeld/modeld.py
  7. 4
      selfdrive/modeld/models/supercombo.onnx
  8. 1
      selfdrive/modeld/parse_model_outputs.py
  9. 2
      selfdrive/test/process_replay/model_replay_ref_commit
  10. 2
      selfdrive/test/process_replay/ref_commit
  11. 34
      selfdrive/test/process_replay/test_processes.py

@ -1 +1 @@
Subproject commit 24a522f6ba47aba12a9baea53020a8323673c79c
Subproject commit 416c3d531c90ce16498d782bf383625a857ee74c

@ -1,10 +1,4 @@
import time
import numpy as np
from openpilot.common.realtime import DT_MDL
from openpilot.common.numpy_fast import interp
from openpilot.system.swaglog import cloudlog
from openpilot.selfdrive.controls.lib.lateral_mpc_lib.lat_mpc import LateralMpc
from openpilot.selfdrive.controls.lib.lateral_mpc_lib.lat_mpc import N as LAT_MPC_N
from openpilot.selfdrive.controls.lib.drive_helpers import CONTROL_N, MIN_SPEED, get_speed_error
from openpilot.selfdrive.controls.lib.desire_helper import DesireHelper
import cereal.messaging as messaging
@ -13,18 +7,6 @@ from cereal import log
TRAJECTORY_SIZE = 33
CAMERA_OFFSET = 0.04
PATH_COST = 1.0
LATERAL_MOTION_COST = 0.11
LATERAL_ACCEL_COST = 0.0
LATERAL_JERK_COST = 0.04
# Extreme steering rate is unpleasant, even
# when it does not cause bad jerk.
# TODO this cost should be lowered when low
# speed lateral control is stable on all cars
STEERING_RATE_COST = 700.0
class LateralPlanner:
def __init__(self, CP, debug=False):
self.DH = DesireHelper()
@ -37,42 +19,26 @@ class LateralPlanner:
self.path_xyz = np.zeros((TRAJECTORY_SIZE, 3))
self.velocity_xyz = np.zeros((TRAJECTORY_SIZE, 3))
self.plan_yaw = np.zeros((TRAJECTORY_SIZE,))
self.plan_yaw_rate = np.zeros((TRAJECTORY_SIZE,))
self.t_idxs = np.arange(TRAJECTORY_SIZE)
self.y_pts = np.zeros((TRAJECTORY_SIZE,))
self.v_plan = np.zeros((TRAJECTORY_SIZE,))
self.v_ego = 0.0
self.x_sol = np.zeros((TRAJECTORY_SIZE, 4), dtype=np.float32)
self.v_ego = MIN_SPEED
self.l_lane_change_prob = 0.0
self.r_lane_change_prob = 0.0
self.debug_mode = debug
self.lat_mpc = LateralMpc()
self.reset_mpc(np.zeros(4))
def reset_mpc(self, x0=None):
if x0 is None:
x0 = np.zeros(4)
self.x0 = x0
self.lat_mpc.reset(x0=self.x0)
def update(self, sm):
# clip speed , lateral planning is not possible at 0 speed
measured_curvature = sm['controlsState'].curvature
v_ego_car = sm['carState'].vEgo
# Parse model predictions
md = sm['modelV2']
if len(md.position.x) == TRAJECTORY_SIZE and len(md.orientation.x) == TRAJECTORY_SIZE:
if len(md.position.x) == TRAJECTORY_SIZE and len(md.velocity.x) == TRAJECTORY_SIZE and len(md.lateralPlannerSolution.x) == TRAJECTORY_SIZE:
self.path_xyz = np.column_stack([md.position.x, md.position.y, md.position.z])
self.t_idxs = np.array(md.position.t)
self.plan_yaw = np.array(md.orientation.z)
self.plan_yaw_rate = np.array(md.orientationRate.z)
self.velocity_xyz = np.column_stack([md.velocity.x, md.velocity.y, md.velocity.z])
car_speed = np.linalg.norm(self.velocity_xyz, axis=1) - get_speed_error(md, v_ego_car)
self.v_plan = np.clip(car_speed, MIN_SPEED, np.inf)
self.v_ego = self.v_plan[0]
self.x_sol = np.column_stack([md.lateralPlannerSolution.x, md.lateralPlannerSolution.y, md.lateralPlannerSolution.yaw, md.lateralPlannerSolution.yawRate])
# Lane change logic
desire_state = md.meta.desireState
@ -82,66 +48,23 @@ class LateralPlanner:
lane_change_prob = self.l_lane_change_prob + self.r_lane_change_prob
self.DH.update(sm['carState'], sm['carControl'].latActive, lane_change_prob)
self.lat_mpc.set_weights(PATH_COST, LATERAL_MOTION_COST,
LATERAL_ACCEL_COST, LATERAL_JERK_COST,
STEERING_RATE_COST)
y_pts = self.path_xyz[:LAT_MPC_N+1, 1]
heading_pts = self.plan_yaw[:LAT_MPC_N+1]
yaw_rate_pts = self.plan_yaw_rate[:LAT_MPC_N+1]
self.y_pts = y_pts
assert len(y_pts) == LAT_MPC_N + 1
assert len(heading_pts) == LAT_MPC_N + 1
assert len(yaw_rate_pts) == LAT_MPC_N + 1
lateral_factor = np.clip(self.factor1 - (self.factor2 * self.v_plan**2), 0.0, np.inf)
p = np.column_stack([self.v_plan, lateral_factor])
self.lat_mpc.run(self.x0,
p,
y_pts,
heading_pts,
yaw_rate_pts)
# init state for next iteration
# mpc.u_sol is the desired second derivative of psi given x0 curv state.
# with x0[3] = measured_yaw_rate, this would be the actual desired yaw rate.
# instead, interpolate x_sol so that x0[3] is the desired yaw rate for lat_control.
self.x0[3] = interp(DT_MDL, self.t_idxs[:LAT_MPC_N + 1], self.lat_mpc.x_sol[:, 3])
# Check for infeasible MPC solution
mpc_nans = np.isnan(self.lat_mpc.x_sol[:, 3]).any()
t = time.monotonic()
if mpc_nans or self.lat_mpc.solution_status != 0:
self.reset_mpc()
self.x0[3] = measured_curvature * self.v_ego
if t > self.last_cloudlog_t + 5.0:
self.last_cloudlog_t = t
cloudlog.warning("Lateral mpc - nan: True")
if self.lat_mpc.cost > 1e6 or mpc_nans:
self.solution_invalid_cnt += 1
else:
self.solution_invalid_cnt = 0
def publish(self, sm, pm):
plan_solution_valid = self.solution_invalid_cnt < 2
plan_send = messaging.new_message('lateralPlan')
plan_send.valid = sm.all_checks(service_list=['carState', 'controlsState', 'modelV2'])
lateralPlan = plan_send.lateralPlan
lateralPlan.modelMonoTime = sm.logMonoTime['modelV2']
lateralPlan.dPathPoints = self.y_pts.tolist()
lateralPlan.psis = self.lat_mpc.x_sol[0:CONTROL_N, 2].tolist()
lateralPlan.dPathPoints = self.path_xyz[:,1].tolist()
lateralPlan.psis = self.x_sol[0:CONTROL_N, 2].tolist()
lateralPlan.curvatures = (self.lat_mpc.x_sol[0:CONTROL_N, 3]/self.v_ego).tolist()
lateralPlan.curvatureRates = [float(x.item() / self.v_ego) for x in self.lat_mpc.u_sol[0:CONTROL_N - 1]] + [0.0]
lateralPlan.curvatures = (self.x_sol[0:CONTROL_N, 3]/self.v_ego).tolist()
lateralPlan.curvatureRates = [float(0) for _ in range(CONTROL_N-1)] # TODO: unused
lateralPlan.mpcSolutionValid = bool(plan_solution_valid)
lateralPlan.solverExecutionTime = self.lat_mpc.solve_time
lateralPlan.mpcSolutionValid = bool(1)
lateralPlan.solverExecutionTime = 0.0
if self.debug_mode:
lateralPlan.solverCost = self.lat_mpc.cost
lateralPlan.solverState = log.LateralPlan.SolverState.new_message()
lateralPlan.solverState.x = self.lat_mpc.x_sol.tolist()
lateralPlan.solverState.u = self.lat_mpc.u_sol.flatten().tolist()
lateralPlan.solverState.x = self.x_sol.tolist()
lateralPlan.desire = self.DH.desire
lateralPlan.useLaneLines = False

@ -21,8 +21,8 @@ def publish_ui_plan(sm, pm, lateral_planner, longitudinal_planner):
ui_send.valid = sm.all_checks(service_list=['carState', 'controlsState', 'modelV2'])
uiPlan = ui_send.uiPlan
uiPlan.frameId = sm['modelV2'].frameId
uiPlan.position.x = np.interp(plan_odo, model_odo, lateral_planner.lat_mpc.x_sol[:,0]).tolist()
uiPlan.position.y = np.interp(plan_odo, model_odo, lateral_planner.lat_mpc.x_sol[:,1]).tolist()
uiPlan.position.x = np.interp(plan_odo, model_odo, lateral_planner.x_sol[:,0]).tolist()
uiPlan.position.y = np.interp(plan_odo, model_odo, lateral_planner.x_sol[:,1]).tolist()
uiPlan.position.z = np.interp(plan_odo, model_odo, lateral_planner.path_xyz[:,2]).tolist()
uiPlan.accel = longitudinal_planner.a_desired_trajectory_full.tolist()
pm.send('uiPlan', ui_send)

@ -21,6 +21,7 @@ class ModelConstants:
NAV_FEATURE_LEN = 256
NAV_INSTRUCTION_LEN = 150
DRIVING_STYLE_LEN = 12
LAT_PLANNER_STATE_LEN = 4
# model outputs constants
FCW_THRESHOLDS_5MS2 = np.array([.05, .05, .15, .15, .15], dtype=np.float32)
@ -37,6 +38,7 @@ class ModelConstants:
ROAD_EDGES_WIDTH = 2
PLAN_WIDTH = 15
DESIRE_PRED_WIDTH = 8
LAT_PLANNER_SOLUTION_WIDTH = 4
NUM_LANE_LINES = 4
NUM_ROAD_EDGES = 2

@ -71,6 +71,11 @@ def fill_model_msg(msg: capnp._DynamicStructBuilder, net_output_data: Dict[str,
orientation_rate = modelV2.orientationRate
fill_xyzt(orientation_rate, ModelConstants.T_IDXS, *net_output_data['plan'][0,:,Plan.ORIENTATION_RATE].T)
# lateral planning
solution = modelV2.lateralPlannerSolution
solution.x, solution.y, solution.yaw, solution.yawRate = [net_output_data['lat_planner_solution'][0,:,i].tolist() for i in range(4)]
solution.xStd, solution.yStd, solution.yawStd, solution.yawRateStd = [net_output_data['lat_planner_solution_stds'][0,:,i].tolist() for i in range(4)]
# times at X_IDXS according to model plan
PLAN_T_IDXS = [np.nan] * ModelConstants.IDX_N
PLAN_T_IDXS[0] = 0.0

@ -11,6 +11,8 @@ from cereal.messaging import PubMaster, SubMaster
from cereal.visionipc import VisionIpcClient, VisionStreamType, VisionBuf
from openpilot.system.swaglog import cloudlog
from openpilot.common.params import Params
from openpilot.common.realtime import DT_MDL
from openpilot.common.numpy_fast import interp
from openpilot.common.filter_simple import FirstOrderFilter
from openpilot.common.realtime import config_realtime_process
from openpilot.common.transformations.model import get_warp_matrix
@ -54,6 +56,7 @@ class ModelState:
self.inputs = {
'desire': np.zeros(ModelConstants.DESIRE_LEN * (ModelConstants.HISTORY_BUFFER_LEN+1), dtype=np.float32),
'traffic_convention': np.zeros(ModelConstants.TRAFFIC_CONVENTION_LEN, dtype=np.float32),
'lat_planner_state': np.zeros(ModelConstants.LAT_PLANNER_STATE_LEN, dtype=np.float32),
'nav_features': np.zeros(ModelConstants.NAV_FEATURE_LEN, dtype=np.float32),
'nav_instructions': np.zeros(ModelConstants.NAV_INSTRUCTION_LEN, dtype=np.float32),
'features_buffer': np.zeros(ModelConstants.HISTORY_BUFFER_LEN * ModelConstants.FEATURE_LEN, dtype=np.float32),
@ -105,6 +108,8 @@ class ModelState:
self.inputs['features_buffer'][:-ModelConstants.FEATURE_LEN] = self.inputs['features_buffer'][ModelConstants.FEATURE_LEN:]
self.inputs['features_buffer'][-ModelConstants.FEATURE_LEN:] = outputs['hidden_state'][0, :]
self.inputs['lat_planner_state'][2] = interp(DT_MDL, ModelConstants.T_IDXS, outputs['lat_planner_solution'][0, :, 2])
self.inputs['lat_planner_state'][3] = interp(DT_MDL, ModelConstants.T_IDXS, outputs['lat_planner_solution'][0, :, 3])
return outputs

@ -1,3 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:18e53fa5d0f9a185833d50fa0d777725ca715460062f3a2c050847588525d87c
size 52272467
oid sha256:6330383805f2e64e750f61c47660d2ec8522f55d84217c0520584d2e0d7c3faf
size 52939093

@ -93,6 +93,7 @@ class Parser:
self.parse_mdn('wide_from_device_euler', outs, in_N=0, out_N=0, out_shape=(ModelConstants.WIDE_FROM_DEVICE_WIDTH,))
self.parse_mdn('lead', outs, in_N=ModelConstants.LEAD_MHP_N, out_N=ModelConstants.LEAD_MHP_SELECTION,
out_shape=(ModelConstants.LEAD_TRAJ_LEN,ModelConstants.LEAD_WIDTH))
self.parse_mdn('lat_planner_solution', outs, in_N=0, out_N=0, out_shape=(ModelConstants.IDX_N,ModelConstants.LAT_PLANNER_SOLUTION_WIDTH))
for k in ['lead_prob', 'lane_lines_prob', 'meta']:
self.parse_binary_crossentropy(k, outs)
self.parse_categorical_crossentropy('desire_state', outs, out_shape=(ModelConstants.DESIRE_PRED_WIDTH,))

@ -1 +1 @@
0e0f55cf3bb2cf79b44adf190e6387a83deb6646
eec02217169e6f5d71b8a376368ea96e83b10e4a

@ -1 +1 @@
6e27d5c97fe6554a86e9ee8bb9259e0cc6df5bb1
dbea36698ba48429b201b138846165eb4c329b92

@ -41,23 +41,23 @@ source_segments = [
]
segments = [
("BODY", "regen7FE9F3C7CE3|2023-10-25--23-56-32--0"),
("HYUNDAI", "regen7519EF9EE71|2023-10-25--23-53-59--0"),
("HYUNDAI2", "regenF68B9F1B286|2023-10-25--23-56-31--0"),
("TOYOTA", "regen56DC072FA51|2023-10-25--23-53-51--0"),
("TOYOTA2", "regen78130056536|2023-10-25--23-53-58--0"),
("TOYOTA3", "regenC554B250909|2023-10-25--23-58-53--0"),
("HONDA", "regen3ED625586FB|2023-10-25--23-56-29--0"),
("HONDA2", "regen9F1A8F44FD5|2023-10-25--23-56-34--0"),
("CHRYSLER", "regen60CE93181EA|2023-10-25--23-59-01--0"),
("RAM", "regen9E2B62E8E9A|2023-10-26--00-00-41--0"),
("SUBARU", "regenEEBF379E0ED|2023-10-26--00-01-37--0"),
("GM", "regen0B0EE5D6E0D|2023-10-25--23-58-57--0"),
("GM2", "regen043B44E4FBD|2023-10-26--00-03-51--0"),
("NISSAN", "regen14F35E327BC|2023-10-26--00-01-22--0"),
("VOLKSWAGEN", "regen63A052AE7D7|2023-10-26--00-01-36--0"),
("MAZDA", "regenF9047685121|2023-10-26--00-05-02--0"),
("FORD", "regen5115F2AE4FE|2023-10-26--00-06-17--0"),
("BODY", "regen997DF2697CB|2023-10-30--23-14-29--0"),
("HYUNDAI", "regen2A9D2A8E0B4|2023-10-30--23-13-34--0"),
("HYUNDAI2", "regen6CA24BC3035|2023-10-30--23-14-28--0"),
("TOYOTA", "regen5C019D76307|2023-10-30--23-13-31--0"),
("TOYOTA2", "regen5DCADA88A96|2023-10-30--23-14-57--0"),
("TOYOTA3", "regen7204CA3A498|2023-10-30--23-15-55--0"),
("HONDA", "regen048F8FA0B24|2023-10-30--23-15-53--0"),
("HONDA2", "regen7D2D3F82D5B|2023-10-30--23-15-55--0"),
("CHRYSLER", "regen7125C42780C|2023-10-30--23-16-21--0"),
("RAM", "regen2731F3213D2|2023-10-30--23-18-11--0"),
("SUBARU", "regen86E4C1B4DDD|2023-10-30--23-18-14--0"),
("GM", "regenF6393D64745|2023-10-30--23-17-18--0"),
("GM2", "regen220F830C05B|2023-10-30--23-18-39--0"),
("NISSAN", "regen4F671F7C435|2023-10-30--23-18-40--0"),
("VOLKSWAGEN", "regen8BDFE7307A0|2023-10-30--23-19-36--0"),
("MAZDA", "regen2E9F1A15FD5|2023-10-30--23-20-36--0"),
("FORD", "regen6D39E54606E|2023-10-30--23-20-54--0"),
]
# dashcamOnly makes don't need to be tested until a full port is done

Loading…
Cancel
Save