* Unpin numpy

* Update lock file

* leave acados comment

* Fix warnings

* Fix more paramsd warnings
pull/29457/head
Kacper Rączy 2 years ago committed by GitHub
parent b8b1e17a21
commit 62a88e504d
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 61
      poetry.lock
  2. 2
      pyproject.toml
  3. 2
      selfdrive/controls/lib/lateral_planner.py
  4. 26
      selfdrive/locationd/paramsd.py

61
poetry.lock generated

@ -2178,39 +2178,36 @@ setuptools = "*"
[[package]] [[package]]
name = "numpy" name = "numpy"
version = "1.23.5" version = "1.25.2"
description = "NumPy is the fundamental package for array computing with Python." description = "Fundamental package for array computing in Python"
optional = false optional = false
python-versions = ">=3.8" python-versions = ">=3.9"
files = [ files = [
{file = "numpy-1.23.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:9c88793f78fca17da0145455f0d7826bcb9f37da4764af27ac945488116efe63"}, {file = "numpy-1.25.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:db3ccc4e37a6873045580d413fe79b68e47a681af8db2e046f1dacfa11f86eb3"},
{file = "numpy-1.23.5-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:e9f4c4e51567b616be64e05d517c79a8a22f3606499941d97bb76f2ca59f982d"}, {file = "numpy-1.25.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:90319e4f002795ccfc9050110bbbaa16c944b1c37c0baeea43c5fb881693ae1f"},
{file = "numpy-1.23.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7903ba8ab592b82014713c491f6c5d3a1cde5b4a3bf116404e08f5b52f6daf43"}, {file = "numpy-1.25.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dfe4a913e29b418d096e696ddd422d8a5d13ffba4ea91f9f60440a3b759b0187"},
{file = "numpy-1.23.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5e05b1c973a9f858c74367553e236f287e749465f773328c8ef31abe18f691e1"}, {file = "numpy-1.25.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f08f2e037bba04e707eebf4bc934f1972a315c883a9e0ebfa8a7756eabf9e357"},
{file = "numpy-1.23.5-cp310-cp310-win32.whl", hash = "sha256:522e26bbf6377e4d76403826ed689c295b0b238f46c28a7251ab94716da0b280"}, {file = "numpy-1.25.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:bec1e7213c7cb00d67093247f8c4db156fd03075f49876957dca4711306d39c9"},
{file = "numpy-1.23.5-cp310-cp310-win_amd64.whl", hash = "sha256:dbee87b469018961d1ad79b1a5d50c0ae850000b639bcb1b694e9981083243b6"}, {file = "numpy-1.25.2-cp310-cp310-win32.whl", hash = "sha256:7dc869c0c75988e1c693d0e2d5b26034644399dd929bc049db55395b1379e044"},
{file = "numpy-1.23.5-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:ce571367b6dfe60af04e04a1834ca2dc5f46004ac1cc756fb95319f64c095a96"}, {file = "numpy-1.25.2-cp310-cp310-win_amd64.whl", hash = "sha256:834b386f2b8210dca38c71a6e0f4fd6922f7d3fcff935dbe3a570945acb1b545"},
{file = "numpy-1.23.5-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:56e454c7833e94ec9769fa0f86e6ff8e42ee38ce0ce1fa4cbb747ea7e06d56aa"}, {file = "numpy-1.25.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c5462d19336db4560041517dbb7759c21d181a67cb01b36ca109b2ae37d32418"},
{file = "numpy-1.23.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5039f55555e1eab31124a5768898c9e22c25a65c1e0037f4d7c495a45778c9f2"}, {file = "numpy-1.25.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:c5652ea24d33585ea39eb6a6a15dac87a1206a692719ff45d53c5282e66d4a8f"},
{file = "numpy-1.23.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:58f545efd1108e647604a1b5aa809591ccd2540f468a880bedb97247e72db387"}, {file = "numpy-1.25.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0d60fbae8e0019865fc4784745814cff1c421df5afee233db6d88ab4f14655a2"},
{file = "numpy-1.23.5-cp311-cp311-win32.whl", hash = "sha256:b2a9ab7c279c91974f756c84c365a669a887efa287365a8e2c418f8b3ba73fb0"}, {file = "numpy-1.25.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:60e7f0f7f6d0eee8364b9a6304c2845b9c491ac706048c7e8cf47b83123b8dbf"},
{file = "numpy-1.23.5-cp311-cp311-win_amd64.whl", hash = "sha256:0cbe9848fad08baf71de1a39e12d1b6310f1d5b2d0ea4de051058e6e1076852d"}, {file = "numpy-1.25.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:bb33d5a1cf360304754913a350edda36d5b8c5331a8237268c48f91253c3a364"},
{file = "numpy-1.23.5-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:f063b69b090c9d918f9df0a12116029e274daf0181df392839661c4c7ec9018a"}, {file = "numpy-1.25.2-cp311-cp311-win32.whl", hash = "sha256:5883c06bb92f2e6c8181df7b39971a5fb436288db58b5a1c3967702d4278691d"},
{file = "numpy-1.23.5-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:0aaee12d8883552fadfc41e96b4c82ee7d794949e2a7c3b3a7201e968c7ecab9"}, {file = "numpy-1.25.2-cp311-cp311-win_amd64.whl", hash = "sha256:5c97325a0ba6f9d041feb9390924614b60b99209a71a69c876f71052521d42a4"},
{file = "numpy-1.23.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:92c8c1e89a1f5028a4c6d9e3ccbe311b6ba53694811269b992c0b224269e2398"}, {file = "numpy-1.25.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:b79e513d7aac42ae918db3ad1341a015488530d0bb2a6abcbdd10a3a829ccfd3"},
{file = "numpy-1.23.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d208a0f8729f3fb790ed18a003f3a57895b989b40ea4dce4717e9cf4af62c6bb"}, {file = "numpy-1.25.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:eb942bfb6f84df5ce05dbf4b46673ffed0d3da59f13635ea9b926af3deb76926"},
{file = "numpy-1.23.5-cp38-cp38-win32.whl", hash = "sha256:06005a2ef6014e9956c09ba07654f9837d9e26696a0470e42beedadb78c11b07"}, {file = "numpy-1.25.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3e0746410e73384e70d286f93abf2520035250aad8c5714240b0492a7302fdca"},
{file = "numpy-1.23.5-cp38-cp38-win_amd64.whl", hash = "sha256:ca51fcfcc5f9354c45f400059e88bc09215fb71a48d3768fb80e357f3b457e1e"}, {file = "numpy-1.25.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d7806500e4f5bdd04095e849265e55de20d8cc4b661b038957354327f6d9b295"},
{file = "numpy-1.23.5-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:8969bfd28e85c81f3f94eb4a66bc2cf1dbdc5c18efc320af34bffc54d6b1e38f"}, {file = "numpy-1.25.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:8b77775f4b7df768967a7c8b3567e309f617dd5e99aeb886fa14dc1a0791141f"},
{file = "numpy-1.23.5-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:a7ac231a08bb37f852849bbb387a20a57574a97cfc7b6cabb488a4fc8be176de"}, {file = "numpy-1.25.2-cp39-cp39-win32.whl", hash = "sha256:2792d23d62ec51e50ce4d4b7d73de8f67a2fd3ea710dcbc8563a51a03fb07b01"},
{file = "numpy-1.23.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bf837dc63ba5c06dc8797c398db1e223a466c7ece27a1f7b5232ba3466aafe3d"}, {file = "numpy-1.25.2-cp39-cp39-win_amd64.whl", hash = "sha256:76b4115d42a7dfc5d485d358728cdd8719be33cc5ec6ec08632a5d6fca2ed380"},
{file = "numpy-1.23.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:33161613d2269025873025b33e879825ec7b1d831317e68f4f2f0f84ed14c719"}, {file = "numpy-1.25.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:1a1329e26f46230bf77b02cc19e900db9b52f398d6722ca853349a782d4cff55"},
{file = "numpy-1.23.5-cp39-cp39-win32.whl", hash = "sha256:af1da88f6bc3d2338ebbf0e22fe487821ea4d8e89053e25fa59d1d79786e7481"}, {file = "numpy-1.25.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4c3abc71e8b6edba80a01a52e66d83c5d14433cbcd26a40c329ec7ed09f37901"},
{file = "numpy-1.23.5-cp39-cp39-win_amd64.whl", hash = "sha256:09b7847f7e83ca37c6e627682f145856de331049013853f344f37b0c9690e3df"}, {file = "numpy-1.25.2-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:1b9735c27cea5d995496f46a8b1cd7b408b3f34b6d50459d9ac8fe3a20cc17bf"},
{file = "numpy-1.23.5-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:abdde9f795cf292fb9651ed48185503a2ff29be87770c3b8e2a14b0cd7aa16f8"}, {file = "numpy-1.25.2.tar.gz", hash = "sha256:fd608e19c8d7c55021dffd43bfe5492fab8cc105cc8986f813f8c3c048b38760"},
{file = "numpy-1.23.5-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f9a909a8bae284d46bbfdefbdd4a262ba19d3bc9921b1e76126b1d21c3c34135"},
{file = "numpy-1.23.5-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:01dd17cbb340bf0fc23981e52e1d18a9d4050792e8fb8363cecbf066a84b827d"},
{file = "numpy-1.23.5.tar.gz", hash = "sha256:1b1766d6f397c18153d40015ddfc79ddb715cabadc04d2d228d4e5a8bc4ded1a"},
] ]
[[package]] [[package]]
@ -4164,4 +4161,4 @@ multidict = ">=4.0"
[metadata] [metadata]
lock-version = "2.0" lock-version = "2.0"
python-versions = "~3.11" python-versions = "~3.11"
content-hash = "849f9d091efd79cb02fffa24846ddb1dd2857cfdce45527093e3bef7d0bc3598" content-hash = "4b2510f1465520a9dc757f64861f4fcea9d9663c0ecdebd23b329ef5e0205863"

@ -31,7 +31,7 @@ hexdump = "*"
Jinja2 = "*" Jinja2 = "*"
json-rpc = "*" json-rpc = "*"
libusb1 = "*" libusb1 = "*"
numpy = "~1.23" # pinned for acados numpy = "*"
onnx = ">=1.14.0" onnx = ">=1.14.0"
onnxruntime-gpu = { version = ">=1.15.1", platform = "linux", markers = "platform_machine == 'x86_64'" } onnxruntime-gpu = { version = ">=1.15.1", platform = "linux", markers = "platform_machine == 'x86_64'" }
pillow = "*" pillow = "*"

@ -132,7 +132,7 @@ class LateralPlanner:
lateralPlan.psis = self.lat_mpc.x_sol[0:CONTROL_N, 2].tolist() lateralPlan.psis = self.lat_mpc.x_sol[0:CONTROL_N, 2].tolist()
lateralPlan.curvatures = (self.lat_mpc.x_sol[0:CONTROL_N, 3]/self.v_ego).tolist() lateralPlan.curvatures = (self.lat_mpc.x_sol[0:CONTROL_N, 3]/self.v_ego).tolist()
lateralPlan.curvatureRates = [float(x/self.v_ego) for x in self.lat_mpc.u_sol[0:CONTROL_N - 1]] + [0.0] lateralPlan.curvatureRates = [float(x.item() / self.v_ego) for x in self.lat_mpc.u_sol[0:CONTROL_N - 1]] + [0.0]
lateralPlan.mpcSolutionValid = bool(plan_solution_valid) lateralPlan.mpcSolutionValid = bool(plan_solution_valid)
lateralPlan.solverExecutionTime = self.lat_mpc.solve_time lateralPlan.solverExecutionTime = self.lat_mpc.solve_time

@ -85,8 +85,8 @@ class ParamsLearner:
# We observe the current stiffness and steer ratio (with a high observation noise) to bound # We observe the current stiffness and steer ratio (with a high observation noise) to bound
# the respective estimate STD. Otherwise the STDs keep increasing, causing rapid changes in the # the respective estimate STD. Otherwise the STDs keep increasing, causing rapid changes in the
# states in longer routes (especially straight stretches). # states in longer routes (especially straight stretches).
stiffness = float(self.kf.x[States.STIFFNESS]) stiffness = float(self.kf.x[States.STIFFNESS].item())
steer_ratio = float(self.kf.x[States.STEER_RATIO]) steer_ratio = float(self.kf.x[States.STEER_RATIO].item())
self.kf.predict_and_observe(t, ObservationKind.STIFFNESS, np.array([[stiffness]])) self.kf.predict_and_observe(t, ObservationKind.STIFFNESS, np.array([[stiffness]]))
self.kf.predict_and_observe(t, ObservationKind.STEER_RATIO, np.array([[steer_ratio]])) self.kf.predict_and_observe(t, ObservationKind.STEER_RATIO, np.array([[steer_ratio]]))
@ -198,14 +198,14 @@ def main(sm=None, pm=None):
learner = ParamsLearner(CP, CP.steerRatio, 1.0, 0.0) learner = ParamsLearner(CP, CP.steerRatio, 1.0, 0.0)
x = learner.kf.x x = learner.kf.x
angle_offset_average = clip(math.degrees(x[States.ANGLE_OFFSET]), angle_offset_average = clip(math.degrees(x[States.ANGLE_OFFSET].item()),
angle_offset_average - MAX_ANGLE_OFFSET_DELTA, angle_offset_average + MAX_ANGLE_OFFSET_DELTA) angle_offset_average - MAX_ANGLE_OFFSET_DELTA, angle_offset_average + MAX_ANGLE_OFFSET_DELTA)
angle_offset = clip(math.degrees(x[States.ANGLE_OFFSET] + x[States.ANGLE_OFFSET_FAST]), angle_offset = clip(math.degrees(x[States.ANGLE_OFFSET].item() + x[States.ANGLE_OFFSET_FAST].item()),
angle_offset - MAX_ANGLE_OFFSET_DELTA, angle_offset + MAX_ANGLE_OFFSET_DELTA) angle_offset - MAX_ANGLE_OFFSET_DELTA, angle_offset + MAX_ANGLE_OFFSET_DELTA)
roll = clip(float(x[States.ROAD_ROLL]), roll - ROLL_MAX_DELTA, roll + ROLL_MAX_DELTA) roll = clip(float(x[States.ROAD_ROLL].item()), roll - ROLL_MAX_DELTA, roll + ROLL_MAX_DELTA)
roll_std = float(P[States.ROAD_ROLL]) roll_std = float(P[States.ROAD_ROLL].item())
# Account for the opposite signs of the yaw rates # Account for the opposite signs of the yaw rates
sensors_valid = bool(abs(learner.speed * (x[States.YAW_RATE] + learner.yaw_rate)) < LATERAL_ACC_SENSOR_THRESHOLD) sensors_valid = bool(abs(learner.speed * (x[States.YAW_RATE].item() + learner.yaw_rate)) < LATERAL_ACC_SENSOR_THRESHOLD)
avg_offset_valid = check_valid_with_hysteresis(avg_offset_valid, angle_offset_average, OFFSET_MAX, OFFSET_LOWERED_MAX) avg_offset_valid = check_valid_with_hysteresis(avg_offset_valid, angle_offset_average, OFFSET_MAX, OFFSET_LOWERED_MAX)
total_offset_valid = check_valid_with_hysteresis(total_offset_valid, angle_offset, OFFSET_MAX, OFFSET_LOWERED_MAX) total_offset_valid = check_valid_with_hysteresis(total_offset_valid, angle_offset, OFFSET_MAX, OFFSET_LOWERED_MAX)
roll_valid = check_valid_with_hysteresis(roll_valid, roll, ROLL_MAX, ROLL_LOWERED_MAX) roll_valid = check_valid_with_hysteresis(roll_valid, roll, ROLL_MAX, ROLL_LOWERED_MAX)
@ -215,8 +215,8 @@ def main(sm=None, pm=None):
liveParameters = msg.liveParameters liveParameters = msg.liveParameters
liveParameters.posenetValid = True liveParameters.posenetValid = True
liveParameters.sensorValid = sensors_valid liveParameters.sensorValid = sensors_valid
liveParameters.steerRatio = float(x[States.STEER_RATIO]) liveParameters.steerRatio = float(x[States.STEER_RATIO].item())
liveParameters.stiffnessFactor = float(x[States.STIFFNESS]) liveParameters.stiffnessFactor = float(x[States.STIFFNESS].item())
liveParameters.roll = roll liveParameters.roll = roll
liveParameters.angleOffsetAverageDeg = angle_offset_average liveParameters.angleOffsetAverageDeg = angle_offset_average
liveParameters.angleOffsetDeg = angle_offset liveParameters.angleOffsetDeg = angle_offset
@ -228,10 +228,10 @@ def main(sm=None, pm=None):
0.2 <= liveParameters.stiffnessFactor <= 5.0, 0.2 <= liveParameters.stiffnessFactor <= 5.0,
min_sr <= liveParameters.steerRatio <= max_sr, min_sr <= liveParameters.steerRatio <= max_sr,
)) ))
liveParameters.steerRatioStd = float(P[States.STEER_RATIO]) liveParameters.steerRatioStd = float(P[States.STEER_RATIO].item())
liveParameters.stiffnessFactorStd = float(P[States.STIFFNESS]) liveParameters.stiffnessFactorStd = float(P[States.STIFFNESS].item())
liveParameters.angleOffsetAverageStd = float(P[States.ANGLE_OFFSET]) liveParameters.angleOffsetAverageStd = float(P[States.ANGLE_OFFSET].item())
liveParameters.angleOffsetFastStd = float(P[States.ANGLE_OFFSET_FAST]) liveParameters.angleOffsetFastStd = float(P[States.ANGLE_OFFSET_FAST].item())
if DEBUG: if DEBUG:
liveParameters.filterState = log.LiveLocationKalman.Measurement.new_message() liveParameters.filterState = log.LiveLocationKalman.Measurement.new_message()
liveParameters.filterState.value = x.tolist() liveParameters.filterState.value = x.tolist()

Loading…
Cancel
Save