|
|
|
@ -8,25 +8,42 @@ |
|
|
|
|
#include "common/timing.h" |
|
|
|
|
#include "common/params.h" |
|
|
|
|
#include "driving.h" |
|
|
|
|
|
|
|
|
|
#define MIN_VALID_LEN 10.0 |
|
|
|
|
#define TRAJECTORY_SIZE 33 |
|
|
|
|
#define TRAJECTORY_TIME 10.0 |
|
|
|
|
#define TRAJECTORY_DISTANCE 192.0 |
|
|
|
|
#define PLAN_IDX 0 |
|
|
|
|
#define LL_IDX PLAN_IDX + PLAN_MHP_N*(PLAN_MHP_GROUP_SIZE) |
|
|
|
|
#define LL_PROB_IDX LL_IDX + 4*2*2*33 |
|
|
|
|
#define RE_IDX LL_PROB_IDX + 4 |
|
|
|
|
#define LEAD_IDX RE_IDX + 2*2*2*33 |
|
|
|
|
#define LEAD_PROB_IDX LEAD_IDX + LEAD_MHP_N*(LEAD_MHP_GROUP_SIZE) |
|
|
|
|
#define DESIRE_STATE_IDX LEAD_PROB_IDX + 3 |
|
|
|
|
#define META_IDX DESIRE_STATE_IDX + DESIRE_LEN |
|
|
|
|
#define POSE_IDX META_IDX + OTHER_META_SIZE + DESIRE_PRED_SIZE |
|
|
|
|
#define OUTPUT_SIZE POSE_IDX + POSE_SIZE |
|
|
|
|
#include "clutil.h" |
|
|
|
|
|
|
|
|
|
constexpr int MODEL_WIDTH = 512; |
|
|
|
|
constexpr int MODEL_HEIGHT = 256; |
|
|
|
|
constexpr int MODEL_FRAME_SIZE = MODEL_WIDTH * MODEL_HEIGHT * 3 / 2; |
|
|
|
|
|
|
|
|
|
constexpr int PLAN_MHP_N = 5; |
|
|
|
|
constexpr int PLAN_MHP_COLUMNS = 30; |
|
|
|
|
constexpr int PLAN_MHP_VALS = 30*33; |
|
|
|
|
constexpr int PLAN_MHP_SELECTION = 1; |
|
|
|
|
constexpr int PLAN_MHP_GROUP_SIZE = (2*PLAN_MHP_VALS + PLAN_MHP_SELECTION); |
|
|
|
|
|
|
|
|
|
constexpr int LEAD_MHP_N = 5; |
|
|
|
|
constexpr int LEAD_MHP_VALS = 4; |
|
|
|
|
constexpr int LEAD_MHP_SELECTION = 3; |
|
|
|
|
constexpr int LEAD_MHP_GROUP_SIZE = (2*LEAD_MHP_VALS + LEAD_MHP_SELECTION); |
|
|
|
|
|
|
|
|
|
constexpr int POSE_SIZE = 12; |
|
|
|
|
|
|
|
|
|
constexpr int MIN_VALID_LEN = 10; |
|
|
|
|
constexpr int TRAJECTORY_TIME = 10; |
|
|
|
|
constexpr float TRAJECTORY_DISTANCE = 192.0; |
|
|
|
|
constexpr int PLAN_IDX = 0; |
|
|
|
|
constexpr int LL_IDX = PLAN_IDX + PLAN_MHP_N*PLAN_MHP_GROUP_SIZE; |
|
|
|
|
constexpr int LL_PROB_IDX = LL_IDX + 4*2*2*33; |
|
|
|
|
constexpr int RE_IDX = LL_PROB_IDX + 4; |
|
|
|
|
constexpr int LEAD_IDX = RE_IDX + 2*2*2*33; |
|
|
|
|
constexpr int LEAD_PROB_IDX = LEAD_IDX + LEAD_MHP_N*(LEAD_MHP_GROUP_SIZE); |
|
|
|
|
constexpr int DESIRE_STATE_IDX = LEAD_PROB_IDX + 3; |
|
|
|
|
constexpr int META_IDX = DESIRE_STATE_IDX + DESIRE_LEN; |
|
|
|
|
constexpr int POSE_IDX = META_IDX + OTHER_META_SIZE + DESIRE_PRED_SIZE; |
|
|
|
|
constexpr int OUTPUT_SIZE = POSE_IDX + POSE_SIZE; |
|
|
|
|
#ifdef TEMPORAL |
|
|
|
|
#define TEMPORAL_SIZE 512 |
|
|
|
|
constexpr int TEMPORAL_SIZE = 512; |
|
|
|
|
#else |
|
|
|
|
#define TEMPORAL_SIZE 0 |
|
|
|
|
constexpr int TEMPORAL_SIZE = 0; |
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
// #define DUMP_YUV
|
|
|
|
@ -35,36 +52,26 @@ Eigen::Matrix<float, MODEL_PATH_DISTANCE, POLYFIT_DEGREE - 1> vander; |
|
|
|
|
float X_IDXS[TRAJECTORY_SIZE]; |
|
|
|
|
float T_IDXS[TRAJECTORY_SIZE]; |
|
|
|
|
|
|
|
|
|
void model_init(ModelState* s, cl_device_id device_id, cl_context context, int temporal) { |
|
|
|
|
void model_init(ModelState* s, cl_device_id device_id, cl_context context) { |
|
|
|
|
frame_init(&s->frame, MODEL_WIDTH, MODEL_HEIGHT, device_id, context); |
|
|
|
|
s->input_frames = (float*)calloc(MODEL_FRAME_SIZE * 2, sizeof(float)); |
|
|
|
|
|
|
|
|
|
const int output_size = OUTPUT_SIZE + TEMPORAL_SIZE; |
|
|
|
|
s->output = (float*)calloc(output_size, sizeof(float)); |
|
|
|
|
s->input_frames = std::make_unique<float[]>(MODEL_FRAME_SIZE * 2); |
|
|
|
|
|
|
|
|
|
s->m = new DefaultRunModel("../../models/supercombo.dlc", s->output, output_size, USE_GPU_RUNTIME); |
|
|
|
|
constexpr int output_size = OUTPUT_SIZE + TEMPORAL_SIZE; |
|
|
|
|
s->output = std::make_unique<float[]>(output_size); |
|
|
|
|
s->m = std::make_unique<DefaultRunModel>("../../models/supercombo.dlc", &s->output[0], output_size, USE_GPU_RUNTIME); |
|
|
|
|
|
|
|
|
|
#ifdef TEMPORAL |
|
|
|
|
assert(temporal); |
|
|
|
|
s->m->addRecurrent(&s->output[OUTPUT_SIZE], TEMPORAL_SIZE); |
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
#ifdef DESIRE |
|
|
|
|
s->prev_desire = std::make_unique<float[]>(DESIRE_LEN); |
|
|
|
|
s->pulse_desire = std::make_unique<float[]>(DESIRE_LEN); |
|
|
|
|
s->m->addDesire(s->pulse_desire.get(), DESIRE_LEN); |
|
|
|
|
s->m->addDesire(s->pulse_desire, DESIRE_LEN); |
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
#ifdef TRAFFIC_CONVENTION |
|
|
|
|
s->traffic_convention = std::make_unique<float[]>(TRAFFIC_CONVENTION_LEN); |
|
|
|
|
s->m->addTrafficConvention(s->traffic_convention.get(), TRAFFIC_CONVENTION_LEN); |
|
|
|
|
|
|
|
|
|
bool is_rhd = Params().read_db_bool("IsRHD"); |
|
|
|
|
if (is_rhd) { |
|
|
|
|
s->traffic_convention[1] = 1.0; |
|
|
|
|
} else { |
|
|
|
|
s->traffic_convention[0] = 1.0; |
|
|
|
|
} |
|
|
|
|
const int idx = Params().read_db_bool("IsRHD") ? 1 : 0; |
|
|
|
|
s->traffic_convention[idx] = 1.0; |
|
|
|
|
s->m->addTrafficConvention(s->traffic_convention, TRAFFIC_CONVENTION_LEN); |
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
// Build Vandermonde matrix
|
|
|
|
@ -75,12 +82,12 @@ void model_init(ModelState* s, cl_device_id device_id, cl_context context, int t |
|
|
|
|
vander(i, j) = pow(X_IDXS[i], POLYFIT_DEGREE-j-1); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
s->q = CL_CHECK_ERR(clCreateCommandQueue(context, device_id, 0, &err)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
ModelDataRaw model_eval_frame(ModelState* s, cl_command_queue q, |
|
|
|
|
cl_mem yuv_cl, int width, int height, |
|
|
|
|
mat3 transform, void* sock, |
|
|
|
|
float *desire_in) { |
|
|
|
|
ModelDataRaw model_eval_frame(ModelState* s, cl_mem yuv_cl, int width, int height, |
|
|
|
|
const mat3 &transform, float *desire_in) { |
|
|
|
|
#ifdef DESIRE |
|
|
|
|
if (desire_in != NULL) { |
|
|
|
|
for (int i = 1; i < DESIRE_LEN; i++) { |
|
|
|
@ -98,10 +105,10 @@ ModelDataRaw model_eval_frame(ModelState* s, cl_command_queue q, |
|
|
|
|
|
|
|
|
|
//for (int i = 0; i < OUTPUT_SIZE + TEMPORAL_SIZE; i++) { printf("%f ", s->output[i]); } printf("\n");
|
|
|
|
|
|
|
|
|
|
float *new_frame_buf = frame_prepare(&s->frame, q, yuv_cl, width, height, transform); |
|
|
|
|
float *new_frame_buf = frame_prepare(&s->frame, s->q, yuv_cl, width, height, transform); |
|
|
|
|
memmove(&s->input_frames[0], &s->input_frames[MODEL_FRAME_SIZE], sizeof(float)*MODEL_FRAME_SIZE); |
|
|
|
|
memmove(&s->input_frames[MODEL_FRAME_SIZE], new_frame_buf, sizeof(float)*MODEL_FRAME_SIZE); |
|
|
|
|
s->m->execute(s->input_frames, MODEL_FRAME_SIZE*2); |
|
|
|
|
s->m->execute(&s->input_frames[0], MODEL_FRAME_SIZE*2); |
|
|
|
|
|
|
|
|
|
#ifdef DUMP_YUV |
|
|
|
|
FILE *dump_yuv_file = fopen("/sdcard/dump.yuv", "wb"); |
|
|
|
@ -110,7 +117,7 @@ ModelDataRaw model_eval_frame(ModelState* s, cl_command_queue q, |
|
|
|
|
assert(1==2); |
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
clEnqueueUnmapMemObject(q, s->frame.net_input, (void*)new_frame_buf, 0, NULL, NULL); |
|
|
|
|
clEnqueueUnmapMemObject(s->q, s->frame.net_input, (void*)new_frame_buf, 0, NULL, NULL); |
|
|
|
|
|
|
|
|
|
// net outputs
|
|
|
|
|
ModelDataRaw net_outputs; |
|
|
|
@ -126,10 +133,8 @@ ModelDataRaw model_eval_frame(ModelState* s, cl_command_queue q, |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void model_free(ModelState* s) { |
|
|
|
|
free(s->output); |
|
|
|
|
free(s->input_frames); |
|
|
|
|
frame_free(&s->frame); |
|
|
|
|
delete s->m; |
|
|
|
|
CL_CHECK(clReleaseCommandQueue(s->q)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void poly_fit(float *in_pts, float *in_stds, float *out, int valid_len) { |
|
|
|
@ -157,48 +162,53 @@ void poly_fit(float *in_pts, float *in_stds, float *out, int valid_len) { |
|
|
|
|
out[3] = y0; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void fill_path(cereal::ModelData::PathData::Builder path, const float * data, float valid_len, int valid_len_idx) { |
|
|
|
|
float points_arr[TRAJECTORY_SIZE]; |
|
|
|
|
float stds_arr[TRAJECTORY_SIZE]; |
|
|
|
|
float poly_arr[POLYFIT_DEGREE]; |
|
|
|
|
float std; |
|
|
|
|
|
|
|
|
|
for (int i=0; i<TRAJECTORY_SIZE; i++) { |
|
|
|
|
// negative sign because mpc has left positive
|
|
|
|
|
points_arr[i] = -data[30*i + 16]; |
|
|
|
|
stds_arr[i] = exp(data[30*(33 + i) + 16]); |
|
|
|
|
static const float *get_best_data(const float *data, int size, int group_size, int offset) { |
|
|
|
|
int max_idx = 0; |
|
|
|
|
for (int i = 1; i < size; i++) { |
|
|
|
|
if (data[(i + 1) * group_size + offset] > |
|
|
|
|
data[(max_idx + 1) * group_size + offset]) { |
|
|
|
|
max_idx = i; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
std = stds_arr[0]; |
|
|
|
|
poly_fit(points_arr, stds_arr, poly_arr, valid_len_idx); |
|
|
|
|
return &data[max_idx * group_size]; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
path.setPoly(poly_arr); |
|
|
|
|
path.setProb(1.0); |
|
|
|
|
path.setStd(std); |
|
|
|
|
path.setValidLen(valid_len); |
|
|
|
|
static const float *get_plan_data(float *plan) { |
|
|
|
|
return get_best_data(plan, PLAN_MHP_N, PLAN_MHP_GROUP_SIZE, -1); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void fill_lane_line(cereal::ModelData::PathData::Builder path, const float * data, int ll_idx, float valid_len, int valid_len_idx, float prob) { |
|
|
|
|
float points_arr[TRAJECTORY_SIZE]; |
|
|
|
|
float stds_arr[TRAJECTORY_SIZE]; |
|
|
|
|
float poly_arr[POLYFIT_DEGREE]; |
|
|
|
|
float std; |
|
|
|
|
static const float *get_lead_data(const float *lead, int t_offset) { |
|
|
|
|
return get_best_data(lead, LEAD_MHP_N, LEAD_MHP_GROUP_SIZE, t_offset - LEAD_MHP_SELECTION); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void fill_path(cereal::ModelData::PathData::Builder path, const float *data, const float prob, |
|
|
|
|
float valid_len, int valid_len_idx, int ll_idx) { |
|
|
|
|
float points[TRAJECTORY_SIZE] = {}; |
|
|
|
|
float stds[TRAJECTORY_SIZE] = {}; |
|
|
|
|
float poly[POLYFIT_DEGREE] = {}; |
|
|
|
|
|
|
|
|
|
for (int i=0; i<TRAJECTORY_SIZE; i++) { |
|
|
|
|
// negative sign because mpc has left positive
|
|
|
|
|
points_arr[i] = -data[2*33*ll_idx + 2*i]; |
|
|
|
|
stds_arr[i] = exp(data[2*33*(4 + ll_idx) + 2*i]); |
|
|
|
|
if (ll_idx == 0) { |
|
|
|
|
points[i] = -data[30 * i + 16]; |
|
|
|
|
stds[i] = exp(data[30 * (33 + i) + 16]); |
|
|
|
|
} else { |
|
|
|
|
points[i] = -data[2 * 33 * ll_idx + 2 * i]; |
|
|
|
|
stds[i] = exp(data[2 * 33 * (4 + ll_idx) + 2 * i]); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
std = stds_arr[0]; |
|
|
|
|
poly_fit(points_arr, stds_arr, poly_arr, valid_len_idx); |
|
|
|
|
const float std = stds[0]; |
|
|
|
|
poly_fit(points, stds, poly, valid_len_idx); |
|
|
|
|
|
|
|
|
|
path.setPoly(poly_arr); |
|
|
|
|
path.setPoly(poly); |
|
|
|
|
path.setProb(prob); |
|
|
|
|
path.setStd(std); |
|
|
|
|
path.setValidLen(valid_len); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void fill_lead_v2(cereal::ModelDataV2::LeadDataV2::Builder lead, const float * data, float prob, float t) { |
|
|
|
|
lead.setProb(prob); |
|
|
|
|
void fill_lead_v2(cereal::ModelDataV2::LeadDataV2::Builder lead, const float *lead_data, const float *prob, int t_offset, float t) { |
|
|
|
|
const float *data = get_lead_data(lead_data, t_offset); |
|
|
|
|
lead.setProb(sigmoid(prob[t_offset])); |
|
|
|
|
lead.setT(t); |
|
|
|
|
float xyva_arr[LEAD_MHP_VALS]; |
|
|
|
|
float xyva_stds_arr[LEAD_MHP_VALS]; |
|
|
|
@ -210,8 +220,9 @@ void fill_lead_v2(cereal::ModelDataV2::LeadDataV2::Builder lead, const float * d |
|
|
|
|
lead.setXyvaStd(xyva_stds_arr); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void fill_lead(cereal::ModelData::LeadData::Builder lead, const float * data, float prob) { |
|
|
|
|
lead.setProb(prob); |
|
|
|
|
void fill_lead(cereal::ModelData::LeadData::Builder lead, const float *lead_data, const float *prob, int t_offset) { |
|
|
|
|
const float *data = get_lead_data(lead_data, t_offset); |
|
|
|
|
lead.setProb(sigmoid(prob[t_offset])); |
|
|
|
|
lead.setDist(data[0]); |
|
|
|
|
lead.setStd(exp(data[LEAD_MHP_VALS])); |
|
|
|
|
// TODO make all msgs same format
|
|
|
|
@ -223,7 +234,8 @@ void fill_lead(cereal::ModelData::LeadData::Builder lead, const float * data, fl |
|
|
|
|
lead.setRelAStd(exp(data[LEAD_MHP_VALS + 3])); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void fill_meta(cereal::ModelData::MetaData::Builder meta, const float * meta_data) { |
|
|
|
|
template <class MetaBuilder> |
|
|
|
|
void fill_meta(MetaBuilder meta, const float *meta_data) { |
|
|
|
|
float desire_state_softmax[DESIRE_LEN]; |
|
|
|
|
float desire_pred_softmax[4*DESIRE_LEN]; |
|
|
|
|
softmax(&meta_data[0], desire_state_softmax, DESIRE_LEN); |
|
|
|
@ -239,22 +251,6 @@ void fill_meta(cereal::ModelData::MetaData::Builder meta, const float * meta_dat |
|
|
|
|
meta.setDesirePrediction(desire_pred_softmax); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void fill_meta_v2(cereal::ModelDataV2::MetaData::Builder meta, const float * meta_data) { |
|
|
|
|
float desire_state_softmax[DESIRE_LEN] = {}; |
|
|
|
|
float desire_pred_softmax[4*DESIRE_LEN] = {}; |
|
|
|
|
softmax(&meta_data[0], desire_state_softmax, DESIRE_LEN); |
|
|
|
|
for (int i=0; i<4; i++) { |
|
|
|
|
softmax(&meta_data[DESIRE_LEN + OTHER_META_SIZE + i*DESIRE_LEN], |
|
|
|
|
&desire_pred_softmax[i*DESIRE_LEN], DESIRE_LEN); |
|
|
|
|
} |
|
|
|
|
meta.setDesireState(desire_state_softmax); |
|
|
|
|
meta.setEngagedProb(sigmoid(meta_data[DESIRE_LEN])); |
|
|
|
|
meta.setGasDisengageProb(sigmoid(meta_data[DESIRE_LEN + 1])); |
|
|
|
|
meta.setBrakeDisengageProb(sigmoid(meta_data[DESIRE_LEN + 2])); |
|
|
|
|
meta.setSteerOverrideProb(sigmoid(meta_data[DESIRE_LEN + 3])); |
|
|
|
|
meta.setDesirePrediction(desire_pred_softmax); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void fill_xyzt(cereal::ModelDataV2::XYZTData::Builder xyzt, const float * data, |
|
|
|
|
int columns, int column_offset, float * plan_t_arr) { |
|
|
|
|
float x_arr[TRAJECTORY_SIZE] = {}; |
|
|
|
@ -292,34 +288,9 @@ void fill_xyzt(cereal::ModelDataV2::XYZTData::Builder xyzt, const float * data, |
|
|
|
|
xyzt.setT(t_arr); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void model_publish_v2(PubMaster &pm, uint32_t vipc_frame_id, uint32_t frame_id, |
|
|
|
|
uint32_t vipc_dropped_frames, float frame_drop, |
|
|
|
|
const ModelDataRaw &net_outputs, const float* raw_pred, uint64_t timestamp_eof, |
|
|
|
|
float model_execution_time) { |
|
|
|
|
// make msg
|
|
|
|
|
MessageBuilder msg; |
|
|
|
|
auto framed = msg.initEvent().initModelV2(); |
|
|
|
|
uint32_t frame_age = (frame_id > vipc_frame_id) ? (frame_id - vipc_frame_id) : 0; |
|
|
|
|
framed.setFrameId(vipc_frame_id); |
|
|
|
|
framed.setFrameAge(frame_age); |
|
|
|
|
framed.setFrameDropPerc(frame_drop * 100); |
|
|
|
|
framed.setTimestampEof(timestamp_eof); |
|
|
|
|
framed.setModelExecutionTime(model_execution_time); |
|
|
|
|
if (send_raw_pred) { |
|
|
|
|
framed.setRawPred(kj::arrayPtr((const uint8_t*)raw_pred, (OUTPUT_SIZE+TEMPORAL_SIZE)*sizeof(float))); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void fill_model(cereal::ModelDataV2::Builder &framed, const ModelDataRaw &net_outputs) { |
|
|
|
|
// plan
|
|
|
|
|
int plan_mhp_max_idx = 0; |
|
|
|
|
for (int i=1; i<PLAN_MHP_N; i++) { |
|
|
|
|
if (net_outputs.plan[(i + 1)*(PLAN_MHP_GROUP_SIZE) - 1] > |
|
|
|
|
net_outputs.plan[(plan_mhp_max_idx + 1)*(PLAN_MHP_GROUP_SIZE) - 1]) { |
|
|
|
|
plan_mhp_max_idx = i; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
float * best_plan = &net_outputs.plan[plan_mhp_max_idx*(PLAN_MHP_GROUP_SIZE)]; |
|
|
|
|
const float *best_plan = get_plan_data(net_outputs.plan); |
|
|
|
|
float plan_t_arr[TRAJECTORY_SIZE]; |
|
|
|
|
for (int i=0; i<TRAJECTORY_SIZE; i++) { |
|
|
|
|
plan_t_arr[i] = best_plan[i*PLAN_MHP_COLUMNS + 15]; |
|
|
|
@ -352,59 +323,24 @@ void model_publish_v2(PubMaster &pm, uint32_t vipc_frame_id, uint32_t frame_id, |
|
|
|
|
framed.setRoadEdgeStds(road_edge_stds_arr); |
|
|
|
|
|
|
|
|
|
// meta
|
|
|
|
|
auto meta = framed.initMeta(); |
|
|
|
|
fill_meta_v2(meta, net_outputs.meta); |
|
|
|
|
fill_meta(framed.initMeta(), net_outputs.meta); |
|
|
|
|
|
|
|
|
|
// leads
|
|
|
|
|
auto leads = framed.initLeads(LEAD_MHP_SELECTION); |
|
|
|
|
float t_offsets[LEAD_MHP_SELECTION] = {0.0, 2.0, 4.0}; |
|
|
|
|
for (int t_offset=0; t_offset<LEAD_MHP_SELECTION; t_offset++) { |
|
|
|
|
int mdn_max_idx = 0; |
|
|
|
|
for (int i=1; i<LEAD_MHP_N; i++) { |
|
|
|
|
if (net_outputs.lead[(i+1)*(LEAD_MHP_GROUP_SIZE) + t_offset - LEAD_MHP_SELECTION] > |
|
|
|
|
net_outputs.lead[(mdn_max_idx + 1)*(LEAD_MHP_GROUP_SIZE) + t_offset - LEAD_MHP_SELECTION]) { |
|
|
|
|
mdn_max_idx = i; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
fill_lead_v2(leads[t_offset], &net_outputs.lead[mdn_max_idx * (LEAD_MHP_GROUP_SIZE)], |
|
|
|
|
sigmoid(net_outputs.lead_prob[t_offset]), t_offsets[t_offset]); |
|
|
|
|
fill_lead_v2(leads[t_offset], net_outputs.lead, net_outputs.lead_prob, t_offset, t_offsets[t_offset]); |
|
|
|
|
} |
|
|
|
|
pm.send("modelV2", msg); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void model_publish(PubMaster &pm, uint32_t vipc_frame_id, uint32_t frame_id, |
|
|
|
|
uint32_t vipc_dropped_frames, float frame_drop, |
|
|
|
|
const ModelDataRaw &net_outputs, const float* raw_pred, uint64_t timestamp_eof, |
|
|
|
|
float model_execution_time) { |
|
|
|
|
|
|
|
|
|
uint32_t frame_age = (frame_id > vipc_frame_id) ? (frame_id - vipc_frame_id) : 0; |
|
|
|
|
MessageBuilder msg; |
|
|
|
|
auto framed = msg.initEvent().initModel(); |
|
|
|
|
framed.setFrameId(vipc_frame_id); |
|
|
|
|
framed.setFrameAge(frame_age); |
|
|
|
|
framed.setFrameDropPerc(frame_drop * 100); |
|
|
|
|
framed.setTimestampEof(timestamp_eof); |
|
|
|
|
framed.setModelExecutionTime(model_execution_time); |
|
|
|
|
if (send_raw_pred) { |
|
|
|
|
framed.setRawPred(kj::arrayPtr((const uint8_t*)raw_pred, (OUTPUT_SIZE+TEMPORAL_SIZE)*sizeof(float))); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void fill_model(cereal::ModelData::Builder &framed, const ModelDataRaw &net_outputs) { |
|
|
|
|
// Find the distribution that corresponds to the most probable plan
|
|
|
|
|
int plan_mhp_max_idx = 0; |
|
|
|
|
for (int i=1; i<PLAN_MHP_N; i++) { |
|
|
|
|
if (net_outputs.plan[(i + 1)*(PLAN_MHP_GROUP_SIZE) - 1] > |
|
|
|
|
net_outputs.plan[(plan_mhp_max_idx + 1)*(PLAN_MHP_GROUP_SIZE) - 1]) { |
|
|
|
|
plan_mhp_max_idx = i; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
const float *best_plan = get_plan_data(net_outputs.plan); |
|
|
|
|
// x pos at 10s is a good valid_len
|
|
|
|
|
float valid_len = 0; |
|
|
|
|
float valid_len_candidate; |
|
|
|
|
for (int i=1; i<TRAJECTORY_SIZE; i++) { |
|
|
|
|
valid_len_candidate = net_outputs.plan[plan_mhp_max_idx*(PLAN_MHP_GROUP_SIZE) + 30*i]; |
|
|
|
|
if (valid_len_candidate >= valid_len){ |
|
|
|
|
valid_len = valid_len_candidate; |
|
|
|
|
if (const float len = best_plan[30*i]; len >= valid_len){ |
|
|
|
|
valid_len = len; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
// clamp to 10 and MODEL_PATH_DISTANCE
|
|
|
|
@ -415,47 +351,39 @@ void model_publish(PubMaster &pm, uint32_t vipc_frame_id, uint32_t frame_id, |
|
|
|
|
valid_len_idx = i; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
fill_path(framed.initPath(), best_plan, 1.0, valid_len, valid_len_idx, 0); |
|
|
|
|
fill_path(framed.initLeftLane(), net_outputs.lane_lines, sigmoid(net_outputs.lane_lines_prob[1]), valid_len, valid_len_idx, 1); |
|
|
|
|
fill_path(framed.initRightLane(), net_outputs.lane_lines, sigmoid(net_outputs.lane_lines_prob[2]), valid_len, valid_len_idx, 2); |
|
|
|
|
|
|
|
|
|
auto lpath = framed.initPath(); |
|
|
|
|
fill_path(lpath, &net_outputs.plan[plan_mhp_max_idx*(PLAN_MHP_GROUP_SIZE)], valid_len, valid_len_idx); |
|
|
|
|
|
|
|
|
|
auto left_lane = framed.initLeftLane(); |
|
|
|
|
int ll_idx = 1; |
|
|
|
|
fill_lane_line(left_lane, net_outputs.lane_lines, ll_idx, valid_len, valid_len_idx, |
|
|
|
|
sigmoid(net_outputs.lane_lines_prob[ll_idx])); |
|
|
|
|
auto right_lane = framed.initRightLane(); |
|
|
|
|
ll_idx = 2; |
|
|
|
|
fill_lane_line(right_lane, net_outputs.lane_lines, ll_idx, valid_len, valid_len_idx, |
|
|
|
|
sigmoid(net_outputs.lane_lines_prob[ll_idx])); |
|
|
|
|
|
|
|
|
|
// Find the distribution that corresponds to the current lead
|
|
|
|
|
int mdn_max_idx = 0; |
|
|
|
|
int t_offset = 0; |
|
|
|
|
for (int i=1; i<LEAD_MHP_N; i++) { |
|
|
|
|
if (net_outputs.lead[(i+1)*(LEAD_MHP_GROUP_SIZE) + t_offset - 3] > |
|
|
|
|
net_outputs.lead[(mdn_max_idx + 1)*(LEAD_MHP_GROUP_SIZE) + t_offset - 3]) { |
|
|
|
|
mdn_max_idx = i; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
fill_lead(framed.initLead(), &net_outputs.lead[mdn_max_idx*(LEAD_MHP_GROUP_SIZE)], sigmoid(net_outputs.lead_prob[t_offset])); |
|
|
|
|
// Find the distribution that corresponds to the lead in 2s
|
|
|
|
|
mdn_max_idx = 0; |
|
|
|
|
t_offset = 1; |
|
|
|
|
for (int i=1; i<LEAD_MHP_N; i++) { |
|
|
|
|
if (net_outputs.lead[(i+1)*(LEAD_MHP_GROUP_SIZE) + t_offset - 3] > |
|
|
|
|
net_outputs.lead[(mdn_max_idx + 1)*(LEAD_MHP_GROUP_SIZE) + t_offset - 3]) { |
|
|
|
|
mdn_max_idx = i; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
fill_lead(framed.initLeadFuture(), &net_outputs.lead[mdn_max_idx*(LEAD_MHP_GROUP_SIZE)], sigmoid(net_outputs.lead_prob[t_offset])); |
|
|
|
|
fill_lead(framed.initLead(), net_outputs.lead, net_outputs.lead_prob, 0); |
|
|
|
|
fill_lead(framed.initLeadFuture(), net_outputs.lead, net_outputs.lead_prob, 1); |
|
|
|
|
|
|
|
|
|
fill_meta(framed.initMeta(), net_outputs.meta); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
pm.send("model", msg); |
|
|
|
|
void model_publish(PubMaster &pm, uint32_t vipc_frame_id, uint32_t frame_id, float frame_drop, |
|
|
|
|
const ModelDataRaw &net_outputs, const float *raw_pred, uint64_t timestamp_eof, |
|
|
|
|
float model_execution_time) { |
|
|
|
|
const uint32_t frame_age = (frame_id > vipc_frame_id) ? (frame_id - vipc_frame_id) : 0; |
|
|
|
|
auto do_publish = [&](auto init_model_func, const char *pub_name) { |
|
|
|
|
MessageBuilder msg; |
|
|
|
|
auto framed = (msg.initEvent().*(init_model_func))(); |
|
|
|
|
framed.setFrameId(vipc_frame_id); |
|
|
|
|
framed.setFrameAge(frame_age); |
|
|
|
|
framed.setFrameDropPerc(frame_drop * 100); |
|
|
|
|
framed.setTimestampEof(timestamp_eof); |
|
|
|
|
framed.setModelExecutionTime(model_execution_time); |
|
|
|
|
if (send_raw_pred) { |
|
|
|
|
framed.setRawPred(kj::arrayPtr((const uint8_t *)raw_pred, (OUTPUT_SIZE + TEMPORAL_SIZE) * sizeof(float))); |
|
|
|
|
} |
|
|
|
|
fill_model(framed, net_outputs); |
|
|
|
|
pm.send(pub_name, msg); |
|
|
|
|
}; |
|
|
|
|
do_publish(&cereal::Event::Builder::initModel, "model"); |
|
|
|
|
do_publish(&cereal::Event::Builder::initModelV2, "modelV2"); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void posenet_publish(PubMaster &pm, uint32_t vipc_frame_id, uint32_t frame_id, |
|
|
|
|
uint32_t vipc_dropped_frames, float frame_drop, |
|
|
|
|
void posenet_publish(PubMaster &pm, uint32_t vipc_frame_id, uint32_t vipc_dropped_frames, |
|
|
|
|
const ModelDataRaw &net_outputs, uint64_t timestamp_eof) { |
|
|
|
|
float trans_arr[3]; |
|
|
|
|
float trans_std_arr[3]; |
|
|
|
|