test_locationd: don't redownload logs (#29929)

don't redownload logs
old-commit-hash: 7e54882458
test-msgs
Justin Newberry 2 years ago committed by GitHub
parent d71decf35d
commit 63775e0c61
  1. 26
      selfdrive/locationd/test/test_locationd_scenarios.py

@ -49,8 +49,7 @@ def get_select_fields_data(logs):
return data return data
def run_scenarios(scenario): def run_scenarios(scenario, logs):
logs = list(LogReader(get_url(TEST_ROUTE, TEST_SEG_NUM)))
if scenario == Scenario.BASE: if scenario == Scenario.BASE:
pass pass
@ -104,6 +103,11 @@ class TestLocationdScenarios(unittest.TestCase):
- locationd kalman filter should never go unstable (we care mostly about yaw_rate, roll, gpsOK, inputsOK, sensorsOK) - locationd kalman filter should never go unstable (we care mostly about yaw_rate, roll, gpsOK, inputsOK, sensorsOK)
- faulty values should be ignored, with appropriate flags set - faulty values should be ignored, with appropriate flags set
""" """
@classmethod
def setUpClass(cls):
cls.logs = list(LogReader(get_url(TEST_ROUTE, TEST_SEG_NUM)))
def test_base(self): def test_base(self):
""" """
Test: unchanged log Test: unchanged log
@ -111,7 +115,7 @@ class TestLocationdScenarios(unittest.TestCase):
- yaw_rate: unchanged - yaw_rate: unchanged
- roll: unchanged - roll: unchanged
""" """
orig_data, replayed_data = run_scenarios(Scenario.BASE) orig_data, replayed_data = run_scenarios(Scenario.BASE, self.logs)
self.assertTrue(np.allclose(orig_data['yaw_rate'], replayed_data['yaw_rate'], atol=np.radians(0.2))) self.assertTrue(np.allclose(orig_data['yaw_rate'], replayed_data['yaw_rate'], atol=np.radians(0.2)))
self.assertTrue(np.allclose(orig_data['roll'], replayed_data['roll'], atol=np.radians(0.5))) self.assertTrue(np.allclose(orig_data['roll'], replayed_data['roll'], atol=np.radians(0.5)))
@ -123,7 +127,7 @@ class TestLocationdScenarios(unittest.TestCase):
- roll: - roll:
- gpsOK: False - gpsOK: False
""" """
orig_data, replayed_data = run_scenarios(Scenario.GPS_OFF) orig_data, replayed_data = run_scenarios(Scenario.GPS_OFF, self.logs)
self.assertTrue(np.allclose(orig_data['yaw_rate'], replayed_data['yaw_rate'], atol=np.radians(0.2))) self.assertTrue(np.allclose(orig_data['yaw_rate'], replayed_data['yaw_rate'], atol=np.radians(0.2)))
self.assertTrue(np.allclose(orig_data['roll'], replayed_data['roll'], atol=np.radians(0.5))) self.assertTrue(np.allclose(orig_data['roll'], replayed_data['roll'], atol=np.radians(0.5)))
self.assertTrue(np.all(replayed_data['gps_flag'] == 0.0)) self.assertTrue(np.all(replayed_data['gps_flag'] == 0.0))
@ -136,7 +140,7 @@ class TestLocationdScenarios(unittest.TestCase):
- roll: - roll:
- gpsOK: True for the first half, False for the second half - gpsOK: True for the first half, False for the second half
""" """
orig_data, replayed_data = run_scenarios(Scenario.GPS_OFF_MIDWAY) orig_data, replayed_data = run_scenarios(Scenario.GPS_OFF_MIDWAY, self.logs)
self.assertTrue(np.allclose(orig_data['yaw_rate'], replayed_data['yaw_rate'], atol=np.radians(0.2))) self.assertTrue(np.allclose(orig_data['yaw_rate'], replayed_data['yaw_rate'], atol=np.radians(0.2)))
self.assertTrue(np.allclose(orig_data['roll'], replayed_data['roll'], atol=np.radians(0.5))) self.assertTrue(np.allclose(orig_data['roll'], replayed_data['roll'], atol=np.radians(0.5)))
self.assertTrue(np.diff(replayed_data['gps_flag'])[512] == -1.0) self.assertTrue(np.diff(replayed_data['gps_flag'])[512] == -1.0)
@ -149,7 +153,7 @@ class TestLocationdScenarios(unittest.TestCase):
- roll: - roll:
- gpsOK: False for the first half, True for the second half - gpsOK: False for the first half, True for the second half
""" """
orig_data, replayed_data = run_scenarios(Scenario.GPS_ON_MIDWAY) orig_data, replayed_data = run_scenarios(Scenario.GPS_ON_MIDWAY, self.logs)
self.assertTrue(np.allclose(orig_data['yaw_rate'], replayed_data['yaw_rate'], atol=np.radians(0.2))) self.assertTrue(np.allclose(orig_data['yaw_rate'], replayed_data['yaw_rate'], atol=np.radians(0.2)))
self.assertTrue(np.allclose(orig_data['roll'], replayed_data['roll'], atol=np.radians(1.5))) self.assertTrue(np.allclose(orig_data['roll'], replayed_data['roll'], atol=np.radians(1.5)))
self.assertTrue(np.diff(replayed_data['gps_flag'])[505] == 1.0) self.assertTrue(np.diff(replayed_data['gps_flag'])[505] == 1.0)
@ -162,7 +166,7 @@ class TestLocationdScenarios(unittest.TestCase):
- roll: - roll:
- gpsOK: False for the middle section, True for the rest - gpsOK: False for the middle section, True for the rest
""" """
orig_data, replayed_data = run_scenarios(Scenario.GPS_TUNNEL) orig_data, replayed_data = run_scenarios(Scenario.GPS_TUNNEL, self.logs)
self.assertTrue(np.allclose(orig_data['yaw_rate'], replayed_data['yaw_rate'], atol=np.radians(0.2))) self.assertTrue(np.allclose(orig_data['yaw_rate'], replayed_data['yaw_rate'], atol=np.radians(0.2)))
self.assertTrue(np.allclose(orig_data['roll'], replayed_data['roll'], atol=np.radians(0.5))) self.assertTrue(np.allclose(orig_data['roll'], replayed_data['roll'], atol=np.radians(0.5)))
self.assertTrue(np.diff(replayed_data['gps_flag'])[213] == -1.0) self.assertTrue(np.diff(replayed_data['gps_flag'])[213] == -1.0)
@ -176,7 +180,7 @@ class TestLocationdScenarios(unittest.TestCase):
- roll: 0 - roll: 0
- sensorsOK: False - sensorsOK: False
""" """
_, replayed_data = run_scenarios(Scenario.GYRO_OFF) _, replayed_data = run_scenarios(Scenario.GYRO_OFF, self.logs)
self.assertTrue(np.allclose(replayed_data['yaw_rate'], 0.0)) self.assertTrue(np.allclose(replayed_data['yaw_rate'], 0.0))
self.assertTrue(np.allclose(replayed_data['roll'], 0.0)) self.assertTrue(np.allclose(replayed_data['roll'], 0.0))
self.assertTrue(np.all(replayed_data['sensors_flag'] == 0.0)) self.assertTrue(np.all(replayed_data['sensors_flag'] == 0.0))
@ -189,7 +193,7 @@ class TestLocationdScenarios(unittest.TestCase):
- roll: unchanged - roll: unchanged
- inputsOK: False for some time after the spike, True for the rest - inputsOK: False for some time after the spike, True for the rest
""" """
orig_data, replayed_data = run_scenarios(Scenario.GYRO_SPIKE_MIDWAY) orig_data, replayed_data = run_scenarios(Scenario.GYRO_SPIKE_MIDWAY, self.logs)
self.assertTrue(np.allclose(orig_data['yaw_rate'], replayed_data['yaw_rate'], atol=np.radians(0.2))) self.assertTrue(np.allclose(orig_data['yaw_rate'], replayed_data['yaw_rate'], atol=np.radians(0.2)))
self.assertTrue(np.allclose(orig_data['roll'], replayed_data['roll'], atol=np.radians(0.5))) self.assertTrue(np.allclose(orig_data['roll'], replayed_data['roll'], atol=np.radians(0.5)))
self.assertTrue(np.diff(replayed_data['inputs_flag'])[500] == -1.0) self.assertTrue(np.diff(replayed_data['inputs_flag'])[500] == -1.0)
@ -203,7 +207,7 @@ class TestLocationdScenarios(unittest.TestCase):
- roll: 0 - roll: 0
- sensorsOK: False - sensorsOK: False
""" """
_, replayed_data = run_scenarios(Scenario.ACCEL_OFF) _, replayed_data = run_scenarios(Scenario.ACCEL_OFF, self.logs)
self.assertTrue(np.allclose(replayed_data['yaw_rate'], 0.0)) self.assertTrue(np.allclose(replayed_data['yaw_rate'], 0.0))
self.assertTrue(np.allclose(replayed_data['roll'], 0.0)) self.assertTrue(np.allclose(replayed_data['roll'], 0.0))
self.assertTrue(np.all(replayed_data['sensors_flag'] == 0.0)) self.assertTrue(np.all(replayed_data['sensors_flag'] == 0.0))
@ -214,7 +218,7 @@ class TestLocationdScenarios(unittest.TestCase):
Test: an accelerometer spike in the middle of the segment Test: an accelerometer spike in the middle of the segment
Expected Result: Right now, the kalman filter is not robust to small spikes like it is to gyroscope spikes. Expected Result: Right now, the kalman filter is not robust to small spikes like it is to gyroscope spikes.
""" """
orig_data, replayed_data = run_scenarios(Scenario.ACCEL_SPIKE_MIDWAY) orig_data, replayed_data = run_scenarios(Scenario.ACCEL_SPIKE_MIDWAY, self.logs)
self.assertTrue(np.allclose(orig_data['yaw_rate'], replayed_data['yaw_rate'], atol=np.radians(0.2))) self.assertTrue(np.allclose(orig_data['yaw_rate'], replayed_data['yaw_rate'], atol=np.radians(0.2)))
self.assertTrue(np.allclose(orig_data['roll'], replayed_data['roll'], atol=np.radians(0.5))) self.assertTrue(np.allclose(orig_data['roll'], replayed_data['roll'], atol=np.radians(0.5)))

Loading…
Cancel
Save