Cython KF1D to Python (#30773)

* Cython KF1D to Python

* cleanup

* set x

* less nesting

* fix release

* Revert "fix release"

This reverts commit 97e5d0f804.
old-commit-hash: 1421551297
chrysler-long2
Adeeb Shihadeh 1 year ago committed by GitHub
parent 6f13688747
commit 63b374bd89
  1. 7
      common/SConscript
  2. 1
      common/kalman/.gitignore
  3. 5
      common/kalman/SConscript
  4. 0
      common/kalman/__init__.py
  5. 12
      common/kalman/simple_kalman.py
  6. 18
      common/kalman/simple_kalman_impl.pxd
  7. 37
      common/kalman/simple_kalman_impl.pyx
  8. 23
      common/kalman/simple_kalman_old.py
  9. 0
      common/kalman/tests/__init__.py
  10. 87
      common/kalman/tests/test_simple_kalman.py
  11. 54
      common/simple_kalman.py
  12. 35
      common/tests/test_simple_kalman.py
  13. 3
      release/files_common
  14. 4
      selfdrive/car/interfaces.py
  15. 2
      selfdrive/controls/radard.py

@ -30,11 +30,10 @@ if GetOption('extras'):
params_python = envCython.Program('params_pyx.so', 'params_pyx.pyx', LIBS=envCython['LIBS'] + [_common, 'zmq', 'json11']) params_python = envCython.Program('params_pyx.so', 'params_pyx.pyx', LIBS=envCython['LIBS'] + [_common, 'zmq', 'json11'])
SConscript([ SConscript([
'kalman/SConscript', 'transformations/SConscript',
'transformations/SConscript'
]) ])
Import('simple_kalman_python', 'transformations_python') Import('transformations_python')
common_python = [params_python, simple_kalman_python, transformations_python] common_python = [params_python, transformations_python]
Export('common_python') Export('common_python')

@ -1 +0,0 @@
simple_kalman_impl.c

@ -1,5 +0,0 @@
Import('envCython')
simple_kalman_python = envCython.Program('simple_kalman_impl.so', 'simple_kalman_impl.pyx')
Export('simple_kalman_python')

@ -1,12 +0,0 @@
from openpilot.common.kalman.simple_kalman_impl import KF1D as KF1D
assert KF1D
import numpy as np
def get_kalman_gain(dt, A, C, Q, R, iterations=100):
P = np.zeros_like(Q)
for _ in range(iterations):
P = A.dot(P).dot(A.T) + dt * Q
S = C.dot(P).dot(C.T) + R
K = P.dot(C.T).dot(np.linalg.inv(S))
P = (np.eye(len(P)) - K.dot(C)).dot(P)
return K

@ -1,18 +0,0 @@
# cython: language_level = 3
cdef class KF1D:
cdef public:
double x0_0
double x1_0
double K0_0
double K1_0
double A0_0
double A0_1
double A1_0
double A1_1
double C0_0
double C0_1
double A_K_0
double A_K_1
double A_K_2
double A_K_3

@ -1,37 +0,0 @@
# distutils: language = c++
# cython: language_level=3
cdef class KF1D:
def __init__(self, x0, A, C, K):
self.x0_0 = x0[0][0]
self.x1_0 = x0[1][0]
self.A0_0 = A[0][0]
self.A0_1 = A[0][1]
self.A1_0 = A[1][0]
self.A1_1 = A[1][1]
self.C0_0 = C[0]
self.C0_1 = C[1]
self.K0_0 = K[0][0]
self.K1_0 = K[1][0]
self.A_K_0 = self.A0_0 - self.K0_0 * self.C0_0
self.A_K_1 = self.A0_1 - self.K0_0 * self.C0_1
self.A_K_2 = self.A1_0 - self.K1_0 * self.C0_0
self.A_K_3 = self.A1_1 - self.K1_0 * self.C0_1
def update(self, meas):
cdef double x0_0 = self.A_K_0 * self.x0_0 + self.A_K_1 * self.x1_0 + self.K0_0 * meas
cdef double x1_0 = self.A_K_2 * self.x0_0 + self.A_K_3 * self.x1_0 + self.K1_0 * meas
self.x0_0 = x0_0
self.x1_0 = x1_0
return [self.x0_0, self.x1_0]
@property
def x(self):
return [[self.x0_0], [self.x1_0]]
@x.setter
def x(self, x):
self.x0_0 = x[0][0]
self.x1_0 = x[1][0]

@ -1,23 +0,0 @@
import numpy as np
class KF1D:
# this EKF assumes constant covariance matrix, so calculations are much simpler
# the Kalman gain also needs to be precomputed using the control module
def __init__(self, x0, A, C, K):
self.x = x0
self.A = A
self.C = np.atleast_2d(C)
self.K = K
self.A_K = self.A - np.dot(self.K, self.C)
# K matrix needs to be pre-computed as follow:
# import control
# (x, l, K) = control.dare(np.transpose(self.A), np.transpose(self.C), Q, R)
# self.K = np.transpose(K)
def update(self, meas):
self.x = np.dot(self.A_K, self.x) + np.dot(self.K, meas)
return self.x

@ -1,87 +0,0 @@
import unittest
import random
import timeit
import numpy as np
from openpilot.common.kalman.simple_kalman import KF1D
from openpilot.common.kalman.simple_kalman_old import KF1D as KF1D_old
class TestSimpleKalman(unittest.TestCase):
def setUp(self):
dt = 0.01
x0_0 = 0.0
x1_0 = 0.0
A0_0 = 1.0
A0_1 = dt
A1_0 = 0.0
A1_1 = 1.0
C0_0 = 1.0
C0_1 = 0.0
K0_0 = 0.12287673
K1_0 = 0.29666309
self.kf_old = KF1D_old(x0=np.array([[x0_0], [x1_0]]),
A=np.array([[A0_0, A0_1], [A1_0, A1_1]]),
C=np.array([C0_0, C0_1]),
K=np.array([[K0_0], [K1_0]]))
self.kf = KF1D(x0=[[x0_0], [x1_0]],
A=[[A0_0, A0_1], [A1_0, A1_1]],
C=[C0_0, C0_1],
K=[[K0_0], [K1_0]])
def test_getter_setter(self):
self.kf.x = [[1.0], [1.0]]
self.assertEqual(self.kf.x, [[1.0], [1.0]])
def update_returns_state(self):
x = self.kf.update(100)
self.assertEqual(x, self.kf.x)
def test_old_equal_new(self):
for _ in range(1000):
v_wheel = random.uniform(0, 200)
x_old = self.kf_old.update(v_wheel)
x = self.kf.update(v_wheel)
# Compare the output x, verify that the error is less than 1e-4
np.testing.assert_almost_equal(x_old[0], x[0])
np.testing.assert_almost_equal(x_old[1], x[1])
def test_new_is_faster(self):
setup = """
import numpy as np
from openpilot.common.kalman.simple_kalman import KF1D
from openpilot.common.kalman.simple_kalman_old import KF1D as KF1D_old
dt = 0.01
x0_0 = 0.0
x1_0 = 0.0
A0_0 = 1.0
A0_1 = dt
A1_0 = 0.0
A1_1 = 1.0
C0_0 = 1.0
C0_1 = 0.0
K0_0 = 0.12287673
K1_0 = 0.29666309
kf_old = KF1D_old(x0=np.array([[x0_0], [x1_0]]),
A=np.array([[A0_0, A0_1], [A1_0, A1_1]]),
C=np.array([C0_0, C0_1]),
K=np.array([[K0_0], [K1_0]]))
kf = KF1D(x0=[[x0_0], [x1_0]],
A=[[A0_0, A0_1], [A1_0, A1_1]],
C=[C0_0, C0_1],
K=[[K0_0], [K1_0]])
"""
kf_speed = timeit.timeit("kf.update(1234)", setup=setup, number=10000)
kf_old_speed = timeit.timeit("kf_old.update(1234)", setup=setup, number=10000)
self.assertTrue(kf_speed < kf_old_speed / 4)
if __name__ == "__main__":
unittest.main()

@ -0,0 +1,54 @@
import numpy as np
def get_kalman_gain(dt, A, C, Q, R, iterations=100):
P = np.zeros_like(Q)
for _ in range(iterations):
P = A.dot(P).dot(A.T) + dt * Q
S = C.dot(P).dot(C.T) + R
K = P.dot(C.T).dot(np.linalg.inv(S))
P = (np.eye(len(P)) - K.dot(C)).dot(P)
return K
class KF1D:
# this EKF assumes constant covariance matrix, so calculations are much simpler
# the Kalman gain also needs to be precomputed using the control module
def __init__(self, x0, A, C, K):
self.x0_0 = x0[0][0]
self.x1_0 = x0[1][0]
self.A0_0 = A[0][0]
self.A0_1 = A[0][1]
self.A1_0 = A[1][0]
self.A1_1 = A[1][1]
self.C0_0 = C[0]
self.C0_1 = C[1]
self.K0_0 = K[0][0]
self.K1_0 = K[1][0]
self.A_K_0 = self.A0_0 - self.K0_0 * self.C0_0
self.A_K_1 = self.A0_1 - self.K0_0 * self.C0_1
self.A_K_2 = self.A1_0 - self.K1_0 * self.C0_0
self.A_K_3 = self.A1_1 - self.K1_0 * self.C0_1
# K matrix needs to be pre-computed as follow:
# import control
# (x, l, K) = control.dare(np.transpose(self.A), np.transpose(self.C), Q, R)
# self.K = np.transpose(K)
def update(self, meas):
#self.x = np.dot(self.A_K, self.x) + np.dot(self.K, meas)
x0_0 = self.A_K_0 * self.x0_0 + self.A_K_1 * self.x1_0 + self.K0_0 * meas
x1_0 = self.A_K_2 * self.x0_0 + self.A_K_3 * self.x1_0 + self.K1_0 * meas
self.x0_0 = x0_0
self.x1_0 = x1_0
return [self.x0_0, self.x1_0]
@property
def x(self):
return [[self.x0_0], [self.x1_0]]
def set_x(self, x):
self.x0_0 = x[0][0]
self.x1_0 = x[1][0]

@ -0,0 +1,35 @@
import unittest
from openpilot.common.simple_kalman import KF1D
class TestSimpleKalman(unittest.TestCase):
def setUp(self):
dt = 0.01
x0_0 = 0.0
x1_0 = 0.0
A0_0 = 1.0
A0_1 = dt
A1_0 = 0.0
A1_1 = 1.0
C0_0 = 1.0
C0_1 = 0.0
K0_0 = 0.12287673
K1_0 = 0.29666309
self.kf = KF1D(x0=[[x0_0], [x1_0]],
A=[[A0_0, A0_1], [A1_0, A1_1]],
C=[C0_0, C0_1],
K=[[K0_0], [K1_0]])
def test_getter_setter(self):
self.kf.set_x([[1.0], [1.0]])
self.assertEqual(self.kf.x, [[1.0], [1.0]])
def update_returns_state(self):
x = self.kf.update(100)
self.assertEqual(x, self.kf.x)
if __name__ == "__main__":
unittest.main()

@ -24,9 +24,6 @@ common/__init__.py
common/*.py common/*.py
common/*.pyx common/*.pyx
common/kalman/.gitignore
common/kalman/*
common/transformations/__init__.py common/transformations/__init__.py
common/transformations/camera.py common/transformations/camera.py
common/transformations/model.py common/transformations/model.py

@ -8,7 +8,7 @@ from typing import Any, Dict, Optional, Tuple, List, Callable
from cereal import car from cereal import car
from openpilot.common.basedir import BASEDIR from openpilot.common.basedir import BASEDIR
from openpilot.common.conversions import Conversions as CV from openpilot.common.conversions import Conversions as CV
from openpilot.common.kalman.simple_kalman import KF1D, get_kalman_gain from openpilot.common.simple_kalman import KF1D, get_kalman_gain
from openpilot.common.numpy_fast import clip from openpilot.common.numpy_fast import clip
from openpilot.common.realtime import DT_CTRL from openpilot.common.realtime import DT_CTRL
from openpilot.selfdrive.car import apply_hysteresis, gen_empty_fingerprint, scale_rot_inertia, scale_tire_stiffness, STD_CARGO_KG from openpilot.selfdrive.car import apply_hysteresis, gen_empty_fingerprint, scale_rot_inertia, scale_tire_stiffness, STD_CARGO_KG
@ -346,7 +346,7 @@ class CarStateBase(ABC):
def update_speed_kf(self, v_ego_raw): def update_speed_kf(self, v_ego_raw):
if abs(v_ego_raw - self.v_ego_kf.x[0][0]) > 2.0: # Prevent large accelerations when car starts at non zero speed if abs(v_ego_raw - self.v_ego_kf.x[0][0]) > 2.0: # Prevent large accelerations when car starts at non zero speed
self.v_ego_kf.x = [[v_ego_raw], [0.0]] self.v_ego_kf.set_x([[v_ego_raw], [0.0]])
v_ego_x = self.v_ego_kf.update(v_ego_raw) v_ego_x = self.v_ego_kf.update(v_ego_raw)
return float(v_ego_x[0]), float(v_ego_x[1]) return float(v_ego_x[0]), float(v_ego_x[1])

@ -11,7 +11,7 @@ from openpilot.common.params import Params
from openpilot.common.realtime import Ratekeeper, Priority, config_realtime_process from openpilot.common.realtime import Ratekeeper, Priority, config_realtime_process
from openpilot.common.swaglog import cloudlog from openpilot.common.swaglog import cloudlog
from openpilot.common.kalman.simple_kalman import KF1D from openpilot.common.simple_kalman import KF1D
# Default lead acceleration decay set to 50% at 1s # Default lead acceleration decay set to 50% at 1s

Loading…
Cancel
Save