Tomb Raider 14 (#35620)

* f7db6a09-43c5-4db9-b856-7fe1a1c231eb/400

* bd99d079-9afb-4af5-9f31-236d5c9ff15f/400

* aggressive tr: 7707a4ca-7d5e-47a2-8760-93b5004695cd/400

* bd99d079-9afb-4af5-9f31-236d5c9ff15f/400

* ae82d7a8-b74d-43b5-ab6d-d72e6040dab3/400

* revert stop distance

* comments
pull/35629/head
Harald Schäfer 3 weeks ago committed by GitHub
parent a5630eb7b7
commit 64fd3f9860
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
  1. 18
      selfdrive/controls/lib/longitudinal_planner.py
  2. 7
      selfdrive/modeld/fill_model_msg.py
  3. 14
      selfdrive/modeld/modeld.py
  4. 4
      selfdrive/modeld/models/driving_policy.onnx
  5. 4
      selfdrive/modeld/models/driving_vision.onnx
  6. 13
      selfdrive/modeld/parse_model_outputs.py

@ -52,6 +52,7 @@ class LongitudinalPlanner:
def __init__(self, CP, init_v=0.0, init_a=0.0, dt=DT_MDL):
self.CP = CP
self.mpc = LongitudinalMpc(dt=dt)
# TODO remove mpc modes when TR released
self.mpc.mode = 'acc'
self.fcw = False
self.dt = dt
@ -90,7 +91,7 @@ class LongitudinalPlanner:
return x, v, a, j, throttle_prob
def update(self, sm):
self.mpc.mode = 'blended' if sm['selfdriveState'].experimentalMode else 'acc'
self.mode = 'blended' if sm['selfdriveState'].experimentalMode else 'acc'
if len(sm['carControl'].orientationNED) == 3:
accel_coast = get_coast_accel(sm['carControl'].orientationNED[1])
@ -113,7 +114,7 @@ class LongitudinalPlanner:
# No change cost when user is controlling the speed, or when standstill
prev_accel_constraint = not (reset_state or sm['carState'].standstill)
if self.mpc.mode == 'acc':
if self.mode == 'acc':
accel_clip = [ACCEL_MIN, get_max_accel(v_ego)]
steer_angle_without_offset = sm['carState'].steeringAngleDeg - sm['liveParameters'].angleOffsetDeg
accel_clip = limit_accel_in_turns(v_ego, steer_angle_without_offset, accel_clip, self.CP)
@ -127,7 +128,7 @@ class LongitudinalPlanner:
# Prevent divergence, smooth in current v_ego
self.v_desired_filter.x = max(0.0, self.v_desired_filter.update(v_ego))
# Compute model v_ego error
# TODO v_model_error is deprecated with TR
self.v_model_error = get_speed_error(sm['modelV2'], v_ego)
x, v, a, j, throttle_prob = self.parse_model(sm['modelV2'], self.v_model_error)
# Don't clip at low speeds since throttle_prob doesn't account for creep
@ -160,8 +161,17 @@ class LongitudinalPlanner:
self.v_desired_filter.x = self.v_desired_filter.x + self.dt * (self.a_desired + a_prev) / 2.0
action_t = self.CP.longitudinalActuatorDelay + DT_MDL
output_a_target, self.output_should_stop = get_accel_from_plan(self.v_desired_trajectory, self.a_desired_trajectory, CONTROL_N_T_IDX,
output_a_target_mpc, output_should_stop_mpc = get_accel_from_plan(self.v_desired_trajectory, self.a_desired_trajectory, CONTROL_N_T_IDX,
action_t=action_t, vEgoStopping=self.CP.vEgoStopping)
output_a_target_e2e = sm['modelV2'].action.desiredAcceleration
output_should_stop_e2e = sm['modelV2'].action.shouldStop
if self.mode == 'acc':
output_a_target = output_a_target_mpc
self.output_should_stop = output_should_stop_mpc
else:
output_a_target = min(output_a_target_mpc, output_a_target_e2e)
self.output_should_stop = output_should_stop_e2e or output_should_stop_mpc
for idx in range(2):
accel_clip[idx] = np.clip(accel_clip[idx], self.prev_accel_clip[idx] - 0.05, self.prev_accel_clip[idx] + 0.05)

@ -89,13 +89,6 @@ def fill_model_msg(base_msg: capnp._DynamicStructBuilder, extended_msg: capnp._D
fill_xyzt(modelV2.orientation, ModelConstants.T_IDXS, *net_output_data['plan'][0,:,Plan.T_FROM_CURRENT_EULER].T)
fill_xyzt(modelV2.orientationRate, ModelConstants.T_IDXS, *net_output_data['plan'][0,:,Plan.ORIENTATION_RATE].T)
# temporal pose
temporal_pose = modelV2.temporalPose
temporal_pose.trans = net_output_data['sim_pose'][0,:ModelConstants.POSE_WIDTH//2].tolist()
temporal_pose.transStd = net_output_data['sim_pose_stds'][0,:ModelConstants.POSE_WIDTH//2].tolist()
temporal_pose.rot = net_output_data['sim_pose'][0,ModelConstants.POSE_WIDTH//2:].tolist()
temporal_pose.rotStd = net_output_data['sim_pose_stds'][0,ModelConstants.POSE_WIDTH//2:].tolist()
# poly path
fill_xyz_poly(driving_model_data.path, ModelConstants.POLY_PATH_DEGREE, *net_output_data['plan'][0,:,Plan.POSITION].T)

@ -31,7 +31,7 @@ from openpilot.common.transformations.camera import DEVICE_CAMERAS
from openpilot.common.transformations.model import get_warp_matrix
from openpilot.system import sentry
from openpilot.selfdrive.controls.lib.desire_helper import DesireHelper
from openpilot.selfdrive.controls.lib.drive_helpers import get_accel_from_plan, smooth_value
from openpilot.selfdrive.controls.lib.drive_helpers import get_accel_from_plan, smooth_value, get_curvature_from_plan
from openpilot.selfdrive.modeld.parse_model_outputs import Parser
from openpilot.selfdrive.modeld.fill_model_msg import fill_model_msg, fill_pose_msg, PublishState
from openpilot.selfdrive.modeld.constants import ModelConstants, Plan
@ -46,8 +46,8 @@ POLICY_PKL_PATH = Path(__file__).parent / 'models/driving_policy_tinygrad.pkl'
VISION_METADATA_PATH = Path(__file__).parent / 'models/driving_vision_metadata.pkl'
POLICY_METADATA_PATH = Path(__file__).parent / 'models/driving_policy_metadata.pkl'
LAT_SMOOTH_SECONDS = 0.0
LONG_SMOOTH_SECONDS = 0.0
LAT_SMOOTH_SECONDS = 0.1
LONG_SMOOTH_SECONDS = 0.3
MIN_LAT_CONTROL_SPEED = 0.3
@ -60,7 +60,11 @@ def get_action_from_model(model_output: dict[str, np.ndarray], prev_action: log.
action_t=long_action_t)
desired_accel = smooth_value(desired_accel, prev_action.desiredAcceleration, LONG_SMOOTH_SECONDS)
desired_curvature = model_output['desired_curvature'][0, 0]
desired_curvature = get_curvature_from_plan(plan[:,Plan.T_FROM_CURRENT_EULER][:,2],
plan[:,Plan.ORIENTATION_RATE][:,2],
ModelConstants.T_IDXS,
v_ego,
lat_action_t)
if v_ego > MIN_LAT_CONTROL_SPEED:
desired_curvature = smooth_value(desired_curvature, prev_action.desiredCurvature, LAT_SMOOTH_SECONDS)
else:
@ -174,7 +178,7 @@ class ModelState:
# TODO model only uses last value now
self.full_prev_desired_curv[0,:-1] = self.full_prev_desired_curv[0,1:]
self.full_prev_desired_curv[0,-1,:] = policy_outputs_dict['desired_curvature'][0, :]
self.numpy_inputs['prev_desired_curv'][:] = self.full_prev_desired_curv[0, self.temporal_idxs]
self.numpy_inputs['prev_desired_curv'][:] = 0*self.full_prev_desired_curv[0, self.temporal_idxs]
combined_outputs_dict = {**vision_outputs_dict, **policy_outputs_dict}
if SEND_RAW_PRED:

@ -1,3 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:5f714fb38bcd44b5d9f44e3a8e1595e1dfdf7558f0eec3485cf3f2dbb6dc7d8d
size 15971805
oid sha256:1741cad23f6f451782b5db6182218749ee12072e393d57eac36d8d5c55d9358a
size 15583374

@ -1,3 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:3ac4867fbc618037e8d03143edbfeeae960f2025644b5dcf36c6665271b4f874
size 34883375
oid sha256:3d2bd82ba42341dba1bda5426e45c4c646db604c9ac422156eaa2b9ef26194f9
size 46265993

@ -88,6 +88,12 @@ class Parser:
self.parse_mdn('pose', outs, in_N=0, out_N=0, out_shape=(ModelConstants.POSE_WIDTH,))
self.parse_mdn('wide_from_device_euler', outs, in_N=0, out_N=0, out_shape=(ModelConstants.WIDE_FROM_DEVICE_WIDTH,))
self.parse_mdn('road_transform', outs, in_N=0, out_N=0, out_shape=(ModelConstants.POSE_WIDTH,))
self.parse_mdn('lane_lines', outs, in_N=0, out_N=0, out_shape=(ModelConstants.NUM_LANE_LINES,ModelConstants.IDX_N,ModelConstants.LANE_LINES_WIDTH))
self.parse_mdn('road_edges', outs, in_N=0, out_N=0, out_shape=(ModelConstants.NUM_ROAD_EDGES,ModelConstants.IDX_N,ModelConstants.LANE_LINES_WIDTH))
self.parse_mdn('lead', outs, in_N=ModelConstants.LEAD_MHP_N, out_N=ModelConstants.LEAD_MHP_SELECTION,
out_shape=(ModelConstants.LEAD_TRAJ_LEN,ModelConstants.LEAD_WIDTH))
for k in ['lead_prob', 'lane_lines_prob']:
self.parse_binary_crossentropy(k, outs)
self.parse_categorical_crossentropy('desire_pred', outs, out_shape=(ModelConstants.DESIRE_PRED_LEN,ModelConstants.DESIRE_PRED_WIDTH))
self.parse_binary_crossentropy('meta', outs)
return outs
@ -95,17 +101,10 @@ class Parser:
def parse_policy_outputs(self, outs: dict[str, np.ndarray]) -> dict[str, np.ndarray]:
self.parse_mdn('plan', outs, in_N=ModelConstants.PLAN_MHP_N, out_N=ModelConstants.PLAN_MHP_SELECTION,
out_shape=(ModelConstants.IDX_N,ModelConstants.PLAN_WIDTH))
self.parse_mdn('lane_lines', outs, in_N=0, out_N=0, out_shape=(ModelConstants.NUM_LANE_LINES,ModelConstants.IDX_N,ModelConstants.LANE_LINES_WIDTH))
self.parse_mdn('road_edges', outs, in_N=0, out_N=0, out_shape=(ModelConstants.NUM_ROAD_EDGES,ModelConstants.IDX_N,ModelConstants.LANE_LINES_WIDTH))
self.parse_mdn('sim_pose', outs, in_N=0, out_N=0, out_shape=(ModelConstants.POSE_WIDTH,))
self.parse_mdn('lead', outs, in_N=ModelConstants.LEAD_MHP_N, out_N=ModelConstants.LEAD_MHP_SELECTION,
out_shape=(ModelConstants.LEAD_TRAJ_LEN,ModelConstants.LEAD_WIDTH))
if 'lat_planner_solution' in outs:
self.parse_mdn('lat_planner_solution', outs, in_N=0, out_N=0, out_shape=(ModelConstants.IDX_N,ModelConstants.LAT_PLANNER_SOLUTION_WIDTH))
if 'desired_curvature' in outs:
self.parse_mdn('desired_curvature', outs, in_N=0, out_N=0, out_shape=(ModelConstants.DESIRED_CURV_WIDTH,))
for k in ['lead_prob', 'lane_lines_prob']:
self.parse_binary_crossentropy(k, outs)
self.parse_categorical_crossentropy('desire_state', outs, out_shape=(ModelConstants.DESIRE_PRED_WIDTH,))
return outs

Loading…
Cancel
Save