Merge branch 'commaai:master' into master

pull/35005/head
Reku Dyu 2 weeks ago committed by GitHub
commit 688b3ada1c
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
  1. 1
      cereal/services.py
  2. 1
      common/params_keys.h
  3. 38
      selfdrive/locationd/helpers.py
  4. 333
      selfdrive/locationd/lagd.py
  5. 137
      selfdrive/locationd/test/test_lagd.py
  6. 2
      selfdrive/selfdrived/selfdrived.py
  7. 11
      selfdrive/test/process_replay/process_replay.py
  8. 2
      selfdrive/test/process_replay/ref_commit
  9. 34
      selfdrive/test/process_replay/test_processes.py
  10. 3
      selfdrive/test/test_onroad.py
  11. 1
      system/manager/process_config.py

@ -36,6 +36,7 @@ _services: dict[str, tuple] = {
"errorLogMessage": (True, 0., 1), "errorLogMessage": (True, 0., 1),
"liveCalibration": (True, 4., 4), "liveCalibration": (True, 4., 4),
"liveTorqueParameters": (True, 4., 1), "liveTorqueParameters": (True, 4., 1),
"liveDelay": (True, 4., 1),
"androidLog": (True, 0.), "androidLog": (True, 0.),
"carState": (True, 100., 10), "carState": (True, 100., 10),
"carControl": (True, 100., 10), "carControl": (True, 100., 10),

@ -71,6 +71,7 @@ inline static std::unordered_map<std::string, uint32_t> keys = {
{"LastPowerDropDetected", CLEAR_ON_MANAGER_START}, {"LastPowerDropDetected", CLEAR_ON_MANAGER_START},
{"LastUpdateException", CLEAR_ON_MANAGER_START}, {"LastUpdateException", CLEAR_ON_MANAGER_START},
{"LastUpdateTime", PERSISTENT}, {"LastUpdateTime", PERSISTENT},
{"LiveDelay", PERSISTENT},
{"LiveParameters", PERSISTENT}, {"LiveParameters", PERSISTENT},
{"LiveParametersV2", PERSISTENT}, {"LiveParametersV2", PERSISTENT},
{"LiveTorqueParameters", PERSISTENT | DONT_LOG}, {"LiveTorqueParameters", PERSISTENT | DONT_LOG},

@ -1,10 +1,48 @@
import numpy as np import numpy as np
from typing import Any from typing import Any
from functools import cache
from cereal import log from cereal import log
from openpilot.common.transformations.orientation import rot_from_euler, euler_from_rot from openpilot.common.transformations.orientation import rot_from_euler, euler_from_rot
@cache
def fft_next_good_size(n: int) -> int:
"""
smallest composite of 2, 3, 5, 7, 11 that is >= n
inspired by pocketfft
"""
if n <= 6:
return n
best, f2 = 2 * n, 1
while f2 < best:
f23 = f2
while f23 < best:
f235 = f23
while f235 < best:
f2357 = f235
while f2357 < best:
f235711 = f2357
while f235711 < best:
best = f235711 if f235711 >= n else best
f235711 *= 11
f2357 *= 7
f235 *= 5
f23 *= 3
f2 *= 2
return best
def parabolic_peak_interp(R, max_index):
if max_index == 0 or max_index == len(R) - 1:
return max_index
y_m1, y_0, y_p1 = R[max_index - 1], R[max_index], R[max_index + 1]
offset = 0.5 * (y_p1 - y_m1) / (2 * y_0 - y_p1 - y_m1)
return max_index + offset
def rotate_cov(rot_matrix, cov_in): def rotate_cov(rot_matrix, cov_in):
return rot_matrix @ cov_in @ rot_matrix.T return rot_matrix @ cov_in @ rot_matrix.T

@ -0,0 +1,333 @@
#!/usr/bin/env python3
import os
import numpy as np
import capnp
from collections import deque
from functools import partial
import cereal.messaging as messaging
from cereal import car, log
from cereal.services import SERVICE_LIST
from openpilot.common.params import Params
from openpilot.common.realtime import config_realtime_process
from openpilot.common.swaglog import cloudlog
from openpilot.selfdrive.locationd.helpers import PoseCalibrator, Pose, fft_next_good_size, parabolic_peak_interp
BLOCK_SIZE = 100
BLOCK_NUM = 50
BLOCK_NUM_NEEDED = 5
MOVING_WINDOW_SEC = 300.0
MIN_OKAY_WINDOW_SEC = 25.0
MIN_RECOVERY_BUFFER_SEC = 2.0
MIN_VEGO = 15.0
MIN_ABS_YAW_RATE = np.radians(1.0)
MIN_NCC = 0.95
MAX_LAG = 1.0
def masked_normalized_cross_correlation(expected_sig: np.ndarray, actual_sig: np.ndarray, mask: np.ndarray, n: int):
"""
References:
D. Padfield. "Masked FFT registration". In Proc. Computer Vision and
Pattern Recognition, pp. 2918-2925 (2010).
:DOI:`10.1109/CVPR.2010.5540032`
"""
eps = np.finfo(np.float64).eps
expected_sig = np.asarray(expected_sig, dtype=np.float64)
actual_sig = np.asarray(actual_sig, dtype=np.float64)
expected_sig[~mask] = 0.0
actual_sig[~mask] = 0.0
rotated_expected_sig = expected_sig[::-1]
rotated_mask = mask[::-1]
fft = partial(np.fft.fft, n=n)
actual_sig_fft = fft(actual_sig)
rotated_expected_sig_fft = fft(rotated_expected_sig)
actual_mask_fft = fft(mask.astype(np.float64))
rotated_mask_fft = fft(rotated_mask.astype(np.float64))
number_overlap_masked_samples = np.fft.ifft(rotated_mask_fft * actual_mask_fft).real
number_overlap_masked_samples[:] = np.round(number_overlap_masked_samples)
number_overlap_masked_samples[:] = np.fmax(number_overlap_masked_samples, eps)
masked_correlated_actual_fft = np.fft.ifft(rotated_mask_fft * actual_sig_fft).real
masked_correlated_expected_fft = np.fft.ifft(actual_mask_fft * rotated_expected_sig_fft).real
numerator = np.fft.ifft(rotated_expected_sig_fft * actual_sig_fft).real
numerator -= masked_correlated_actual_fft * masked_correlated_expected_fft / number_overlap_masked_samples
actual_squared_fft = fft(actual_sig ** 2)
actual_sig_denom = np.fft.ifft(rotated_mask_fft * actual_squared_fft).real
actual_sig_denom -= masked_correlated_actual_fft ** 2 / number_overlap_masked_samples
actual_sig_denom[:] = np.fmax(actual_sig_denom, 0.0)
rotated_expected_squared_fft = fft(rotated_expected_sig ** 2)
expected_sig_denom = np.fft.ifft(actual_mask_fft * rotated_expected_squared_fft).real
expected_sig_denom -= masked_correlated_expected_fft ** 2 / number_overlap_masked_samples
expected_sig_denom[:] = np.fmax(expected_sig_denom, 0.0)
denom = np.sqrt(actual_sig_denom * expected_sig_denom)
# zero-out samples with very small denominators
tol = 1e3 * eps * np.max(np.abs(denom), keepdims=True)
nonzero_indices = denom > tol
ncc = np.zeros_like(denom, dtype=np.float64)
ncc[nonzero_indices] = numerator[nonzero_indices] / denom[nonzero_indices]
np.clip(ncc, -1, 1, out=ncc)
return ncc
class Points:
def __init__(self, num_points: int):
self.times = deque[float]([0.0] * num_points, maxlen=num_points)
self.okay = deque[bool]([False] * num_points, maxlen=num_points)
self.desired = deque[float]([0.0] * num_points, maxlen=num_points)
self.actual = deque[float]([0.0] * num_points, maxlen=num_points)
@property
def num_points(self):
return len(self.desired)
@property
def num_okay(self):
return np.count_nonzero(self.okay)
def update(self, t: float, desired: float, actual: float, okay: bool):
self.times.append(t)
self.okay.append(okay)
self.desired.append(desired)
self.actual.append(actual)
def get(self) -> tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
return np.array(self.times), np.array(self.desired), np.array(self.actual), np.array(self.okay)
class BlockAverage:
def __init__(self, num_blocks: int, block_size: int, valid_blocks: int, initial_value: float):
self.num_blocks = num_blocks
self.block_size = block_size
self.block_idx = valid_blocks % num_blocks
self.idx = 0
self.values = np.tile(initial_value, (num_blocks, 1))
self.valid_blocks = valid_blocks
def update(self, value: float):
self.values[self.block_idx] = (self.idx * self.values[self.block_idx] + value) / (self.idx + 1)
self.idx = (self.idx + 1) % self.block_size
if self.idx == 0:
self.block_idx = (self.block_idx + 1) % self.num_blocks
self.valid_blocks = min(self.valid_blocks + 1, self.num_blocks)
def get(self) -> tuple[float, float]:
valid_block_idx = [i for i in range(self.valid_blocks) if i != self.block_idx]
valid_and_current_idx = valid_block_idx + ([self.block_idx] if self.idx > 0 else [])
valid_mean = float(np.mean(self.values[valid_block_idx], axis=0).item()) if len(valid_block_idx) > 0 else float('nan')
current_mean = float(np.mean(self.values[valid_and_current_idx], axis=0).item()) if len(valid_and_current_idx) > 0 else float('nan')
return valid_mean, current_mean
class LateralLagEstimator:
inputs = {"carControl", "carState", "controlsState", "liveCalibration", "livePose"}
def __init__(self, CP: car.CarParams, dt: float,
block_count: int = BLOCK_NUM, min_valid_block_count: int = BLOCK_NUM_NEEDED, block_size: int = BLOCK_SIZE,
window_sec: float = MOVING_WINDOW_SEC, okay_window_sec: float = MIN_OKAY_WINDOW_SEC, min_recovery_buffer_sec: float = MIN_RECOVERY_BUFFER_SEC,
min_vego: float = MIN_VEGO, min_yr: float = MIN_ABS_YAW_RATE, min_ncc: float = MIN_NCC):
self.dt = dt
self.window_sec = window_sec
self.okay_window_sec = okay_window_sec
self.min_recovery_buffer_sec = min_recovery_buffer_sec
self.initial_lag = CP.steerActuatorDelay + 0.2
self.block_size = block_size
self.block_count = block_count
self.min_valid_block_count = min_valid_block_count
self.min_vego = min_vego
self.min_yr = min_yr
self.min_ncc = min_ncc
self.t = 0.0
self.lat_active = False
self.steering_pressed = False
self.steering_saturated = False
self.desired_curvature = 0.0
self.v_ego = 0.0
self.yaw_rate = 0.0
self.last_lat_inactive_t = 0.0
self.last_steering_pressed_t = 0.0
self.last_steering_saturated_t = 0.0
self.last_estimate_t = 0.0
self.calibrator = PoseCalibrator()
self.reset(self.initial_lag, 0)
def reset(self, initial_lag: float, valid_blocks: int):
window_len = int(self.window_sec / self.dt)
self.points = Points(window_len)
self.block_avg = BlockAverage(self.block_count, self.block_size, valid_blocks, initial_lag)
def get_msg(self, valid: bool, debug: bool = False) -> capnp._DynamicStructBuilder:
msg = messaging.new_message('liveDelay')
msg.valid = valid
liveDelay = msg.liveDelay
valid_mean_lag, current_mean_lag = self.block_avg.get()
if self.block_avg.valid_blocks >= self.min_valid_block_count and not np.isnan(valid_mean_lag):
liveDelay.status = log.LiveDelayData.Status.estimated
liveDelay.lateralDelay = valid_mean_lag
else:
liveDelay.status = log.LiveDelayData.Status.unestimated
liveDelay.lateralDelay = self.initial_lag
if not np.isnan(current_mean_lag):
liveDelay.lateralDelayEstimate = current_mean_lag
else:
liveDelay.lateralDelayEstimate = self.initial_lag
liveDelay.validBlocks = self.block_avg.valid_blocks
if debug:
liveDelay.points = self.block_avg.values.flatten().tolist()
return msg
def handle_log(self, t: float, which: str, msg: capnp._DynamicStructReader):
if which == "carControl":
self.lat_active = msg.latActive
elif which == "carState":
self.steering_pressed = msg.steeringPressed
self.v_ego = msg.vEgo
elif which == "controlsState":
self.steering_saturated = getattr(msg.lateralControlState, msg.lateralControlState.which()).saturated
self.desired_curvature = msg.desiredCurvature
elif which == "liveCalibration":
self.calibrator.feed_live_calib(msg)
elif which == "livePose":
device_pose = Pose.from_live_pose(msg)
calibrated_pose = self.calibrator.build_calibrated_pose(device_pose)
self.yaw_rate = calibrated_pose.angular_velocity.z
self.t = t
def points_enough(self):
return self.points.num_points >= int(self.okay_window_sec / self.dt)
def points_valid(self):
return self.points.num_okay >= int(self.okay_window_sec / self.dt)
def update_points(self):
if not self.lat_active:
self.last_lat_inactive_t = self.t
if self.steering_pressed:
self.last_steering_pressed_t = self.t
if self.steering_saturated:
self.last_steering_saturated_t = self.t
la_desired = self.desired_curvature * self.v_ego * self.v_ego
la_actual_pose = self.yaw_rate * self.v_ego
fast = self.v_ego > self.min_vego
turning = np.abs(self.yaw_rate) >= self.min_yr
has_recovered = all( # wait for recovery after !lat_active, steering_pressed, steering_saturated
self.t - last_t >= self.min_recovery_buffer_sec
for last_t in [self.last_lat_inactive_t, self.last_steering_pressed_t, self.last_steering_saturated_t]
)
okay = self.lat_active and not self.steering_pressed and not self.steering_saturated and fast and turning and has_recovered
self.points.update(self.t, la_desired, la_actual_pose, okay)
def update_estimate(self):
if not self.points_enough():
return
times, desired, actual, okay = self.points.get()
# check if there are any new valid data points since the last update
is_valid = self.points_valid()
if self.last_estimate_t != 0 and times[0] <= self.last_estimate_t:
new_values_start_idx = next(-i for i, t in enumerate(reversed(times)) if t <= self.last_estimate_t)
is_valid = is_valid and not (new_values_start_idx == 0 or not np.any(okay[new_values_start_idx:]))
delay, corr = self.actuator_delay(desired, actual, okay, self.dt, MAX_LAG)
if corr < self.min_ncc or not is_valid:
return
self.block_avg.update(delay)
self.last_estimate_t = self.t
def actuator_delay(self, expected_sig: np.ndarray, actual_sig: np.ndarray, mask: np.ndarray, dt: float, max_lag: float) -> tuple[float, float]:
assert len(expected_sig) == len(actual_sig)
max_lag_samples = int(max_lag / dt)
padded_size = fft_next_good_size(len(expected_sig) + max_lag_samples)
ncc = masked_normalized_cross_correlation(expected_sig, actual_sig, mask, padded_size)
# only consider lags from 0 to max_lag
roi_ncc = ncc[len(expected_sig) - 1: len(expected_sig) - 1 + max_lag_samples]
max_corr_index = np.argmax(roi_ncc)
corr = roi_ncc[max_corr_index]
lag = parabolic_peak_interp(roi_ncc, max_corr_index) * dt
return lag, corr
def retrieve_initial_lag(params_reader: Params, CP: car.CarParams):
last_lag_data = params_reader.get("LiveDelay")
last_carparams_data = params_reader.get("CarParamsPrevRoute")
if last_lag_data is not None:
try:
with log.Event.from_bytes(last_lag_data) as last_lag_msg, car.CarParams.from_bytes(last_carparams_data) as last_CP:
ld = last_lag_msg.liveDelay
if last_CP.carFingerprint != CP.carFingerprint:
raise Exception("Car model mismatch")
lag, valid_blocks = ld.lateralDelayEstimate, ld.validBlocks
assert valid_blocks <= BLOCK_NUM, "Invalid number of valid blocks"
return lag, valid_blocks
except Exception as e:
cloudlog.error(f"Failed to retrieve initial lag: {e}")
return None
def main():
config_realtime_process([0, 1, 2, 3], 5)
DEBUG = bool(int(os.getenv("DEBUG", "0")))
pm = messaging.PubMaster(['liveDelay'])
sm = messaging.SubMaster(['livePose', 'liveCalibration', 'carState', 'controlsState', 'carControl'], poll='livePose')
params_reader = Params()
CP = messaging.log_from_bytes(params_reader.get("CarParams", block=True), car.CarParams)
lag_learner = LateralLagEstimator(CP, 1. / SERVICE_LIST['livePose'].frequency)
if (initial_lag_params := retrieve_initial_lag(params_reader, CP)) is not None:
lag, valid_blocks = initial_lag_params
lag_learner.reset(lag, valid_blocks)
while True:
sm.update()
if sm.all_checks():
for which in sorted(sm.updated.keys(), key=lambda x: sm.logMonoTime[x]):
if sm.updated[which]:
t = sm.logMonoTime[which] * 1e-9
lag_learner.handle_log(t, which, sm[which])
lag_learner.update_points()
# 4Hz driven by livePose
if sm.frame % 5 == 0:
lag_learner.update_estimate()
lag_msg = lag_learner.get_msg(sm.all_checks(), DEBUG)
lag_msg_dat = lag_msg.to_bytes()
pm.send('liveDelay', lag_msg_dat)
if sm.frame % 1200 == 0: # cache every 60 seconds
params_reader.put_nonblocking("LiveDelay", lag_msg_dat)

@ -0,0 +1,137 @@
import random
import numpy as np
import time
import pytest
from cereal import messaging
from openpilot.selfdrive.locationd.lagd import LateralLagEstimator, retrieve_initial_lag, masked_normalized_cross_correlation, \
BLOCK_NUM_NEEDED, BLOCK_SIZE, MIN_OKAY_WINDOW_SEC
from openpilot.selfdrive.test.process_replay.migration import migrate, migrate_carParams
from openpilot.selfdrive.locationd.test.test_locationd_scenarios import TEST_ROUTE
from openpilot.common.params import Params
from openpilot.tools.lib.logreader import LogReader
from openpilot.system.hardware import PC
MAX_ERR_FRAMES = 1
DT = 0.05
def process_messages(mocker, estimator, lag_frames, n_frames, vego=20.0, rejection_threshold=0.0):
class ZeroMock(mocker.Mock):
def __getattr__(self, *args):
return 0
for i in range(n_frames):
t = i * estimator.dt
desired_la = np.cos(t)
actual_la = np.cos(t - lag_frames * estimator.dt)
# if sample is masked out, set it to desired value (no lag)
rejected = random.uniform(0, 1) < rejection_threshold
if rejected:
actual_la = desired_la
desired_cuvature = desired_la / (vego ** 2)
actual_yr = actual_la / vego
msgs = [
(t, "carControl", mocker.Mock(latActive=not rejected)),
(t, "carState", mocker.Mock(vEgo=vego, steeringPressed=False)),
(t, "controlsState", mocker.Mock(desiredCurvature=desired_cuvature,
lateralControlState=mocker.Mock(which=mocker.Mock(return_value='debugControlState'), debugControlState=ZeroMock()))),
(t, "livePose", mocker.Mock(orientationNED=ZeroMock(),
velocityDevice=ZeroMock(),
accelerationDevice=ZeroMock(),
angularVelocityDevice=ZeroMock(z=actual_yr))),
]
for t, w, m in msgs:
estimator.handle_log(t, w, m)
estimator.update_points()
estimator.update_estimate()
class TestLagd:
def test_read_saved_params(self):
params = Params()
lr = migrate(LogReader(TEST_ROUTE), [migrate_carParams])
CP = next(m for m in lr if m.which() == "carParams").carParams
msg = messaging.new_message('liveDelay')
msg.liveDelay.lateralDelayEstimate = random.random()
msg.liveDelay.validBlocks = random.randint(1, 10)
params.put("LiveDelay", msg.to_bytes())
params.put("CarParamsPrevRoute", CP.as_builder().to_bytes())
saved_lag_params = retrieve_initial_lag(params, CP)
assert saved_lag_params is not None
lag, valid_blocks = saved_lag_params
assert lag == msg.liveDelay.lateralDelayEstimate
assert valid_blocks == msg.liveDelay.validBlocks
def test_ncc(self):
lag_frames = random.randint(1, 19)
desired_sig = np.sin(np.arange(0.0, 10.0, 0.1))
actual_sig = np.sin(np.arange(0.0, 10.0, 0.1) - lag_frames * 0.1)
mask = np.ones(len(desired_sig), dtype=bool)
corr = masked_normalized_cross_correlation(desired_sig, actual_sig, mask, 200)[len(desired_sig) - 1:len(desired_sig) + 20]
assert np.argmax(corr) == lag_frames
# add some noise
desired_sig += np.random.normal(0, 0.05, len(desired_sig))
actual_sig += np.random.normal(0, 0.05, len(actual_sig))
corr = masked_normalized_cross_correlation(desired_sig, actual_sig, mask, 200)[len(desired_sig) - 1:len(desired_sig) + 20]
assert np.argmax(corr) in range(lag_frames - MAX_ERR_FRAMES, lag_frames + MAX_ERR_FRAMES + 1)
# mask out 40% of the values, and make them noise
mask = np.random.choice([True, False], size=len(desired_sig), p=[0.6, 0.4])
desired_sig[~mask] = np.random.normal(0, 1, size=np.sum(~mask))
actual_sig[~mask] = np.random.normal(0, 1, size=np.sum(~mask))
corr = masked_normalized_cross_correlation(desired_sig, actual_sig, mask, 200)[len(desired_sig) - 1:len(desired_sig) + 20]
assert np.argmax(corr) in range(lag_frames - MAX_ERR_FRAMES, lag_frames + MAX_ERR_FRAMES + 1)
def test_empty_estimator(self, mocker):
mocked_CP = mocker.Mock(steerActuatorDelay=0.8)
estimator = LateralLagEstimator(mocked_CP, DT)
msg = estimator.get_msg(True)
assert msg.liveDelay.status == 'unestimated'
assert np.allclose(msg.liveDelay.lateralDelay, estimator.initial_lag)
assert np.allclose(msg.liveDelay.lateralDelayEstimate, estimator.initial_lag)
assert msg.liveDelay.validBlocks == 0
def test_estimator_basics(self, mocker, subtests):
for lag_frames in range(5):
with subtests.test(msg=f"lag_frames={lag_frames}"):
mocked_CP = mocker.Mock(steerActuatorDelay=0.8)
estimator = LateralLagEstimator(mocked_CP, DT, min_recovery_buffer_sec=0.0, min_yr=0.0)
process_messages(mocker, estimator, lag_frames, int(MIN_OKAY_WINDOW_SEC / DT) + BLOCK_NUM_NEEDED * BLOCK_SIZE)
msg = estimator.get_msg(True)
assert msg.liveDelay.status == 'estimated'
assert np.allclose(msg.liveDelay.lateralDelay, lag_frames * DT, atol=0.01)
assert np.allclose(msg.liveDelay.lateralDelayEstimate, lag_frames * DT, atol=0.01)
assert msg.liveDelay.validBlocks == BLOCK_NUM_NEEDED
def test_estimator_masking(self, mocker):
mocked_CP, lag_frames = mocker.Mock(steerActuatorDelay=0.8), random.randint(1, 19)
estimator = LateralLagEstimator(mocked_CP, DT, min_recovery_buffer_sec=0.0, min_yr=0.0, min_valid_block_count=1)
process_messages(mocker, estimator, lag_frames, (int(MIN_OKAY_WINDOW_SEC / DT) + BLOCK_SIZE) * 2, rejection_threshold=0.4)
msg = estimator.get_msg(True)
assert np.allclose(msg.liveDelay.lateralDelayEstimate, lag_frames * DT, atol=0.01)
@pytest.mark.skipif(PC, reason="only on device")
@pytest.mark.timeout(60)
def test_estimator_performance(self, mocker):
mocked_CP = mocker.Mock(steerActuatorDelay=0.8)
estimator = LateralLagEstimator(mocked_CP, DT)
ds = []
for _ in range(1000):
st = time.perf_counter()
estimator.update_points()
estimator.update_estimate()
d = time.perf_counter() - st
ds.append(d)
assert np.mean(ds) < DT

@ -75,7 +75,7 @@ class SelfdriveD:
# no vipc in replay will make them ignored anyways # no vipc in replay will make them ignored anyways
ignore += ['roadCameraState', 'wideRoadCameraState'] ignore += ['roadCameraState', 'wideRoadCameraState']
self.sm = messaging.SubMaster(['deviceState', 'pandaStates', 'peripheralState', 'modelV2', 'liveCalibration', self.sm = messaging.SubMaster(['deviceState', 'pandaStates', 'peripheralState', 'modelV2', 'liveCalibration',
'carOutput', 'driverMonitoringState', 'longitudinalPlan', 'livePose', 'carOutput', 'driverMonitoringState', 'longitudinalPlan', 'livePose', 'liveDelay',
'managerState', 'liveParameters', 'radarState', 'liveTorqueParameters', 'managerState', 'liveParameters', 'radarState', 'liveTorqueParameters',
'controlsState', 'carControl', 'driverAssistance', 'alertDebug'] + \ 'controlsState', 'carControl', 'driverAssistance', 'alertDebug'] + \
self.camera_packets + self.sensor_packets + self.gps_packets, self.camera_packets + self.sensor_packets + self.gps_packets,

@ -462,7 +462,7 @@ CONFIGS = [
proc_name="selfdrived", proc_name="selfdrived",
pubs=[ pubs=[
"carState", "deviceState", "pandaStates", "peripheralState", "liveCalibration", "driverMonitoringState", "carState", "deviceState", "pandaStates", "peripheralState", "liveCalibration", "driverMonitoringState",
"longitudinalPlan", "livePose", "liveParameters", "radarState", "longitudinalPlan", "livePose", "liveDelay", "liveParameters", "radarState",
"modelV2", "driverCameraState", "roadCameraState", "wideRoadCameraState", "managerState", "modelV2", "driverCameraState", "roadCameraState", "wideRoadCameraState", "managerState",
"liveTorqueParameters", "accelerometer", "gyroscope", "carOutput", "liveTorqueParameters", "accelerometer", "gyroscope", "carOutput",
"gpsLocationExternal", "gpsLocation", "controlsState", "carControl", "driverAssistance", "alertDebug", "gpsLocationExternal", "gpsLocation", "controlsState", "carControl", "driverAssistance", "alertDebug",
@ -551,6 +551,15 @@ CONFIGS = [
tolerance=NUMPY_TOLERANCE, tolerance=NUMPY_TOLERANCE,
processing_time=0.004, processing_time=0.004,
), ),
ProcessConfig(
proc_name="lagd",
pubs=["livePose", "liveCalibration", "carState", "carControl", "controlsState"],
subs=["liveDelay"],
ignore=["logMonoTime"],
init_callback=get_car_params_callback,
should_recv_callback=MessageBasedRcvCallback("livePose"),
tolerance=NUMPY_TOLERANCE,
),
ProcessConfig( ProcessConfig(
proc_name="ubloxd", proc_name="ubloxd",
pubs=["ubloxRaw"], pubs=["ubloxRaw"],

@ -1 +1 @@
37fd7afb99bf188c1e5375d01f011ae35821f640 4576c437dc14bc830956dd272dade4d7f027dab5

@ -41,23 +41,23 @@ source_segments = [
] ]
segments = [ segments = [
("BODY", "regenA67A128BCD8|2024-08-30--02-36-22--0"), ("BODY", "regen2F3C7259F1B|2025-04-08--23-00-23--0"),
("HYUNDAI", "regenCCD47FEBC0C|2025-03-04--03-21-48--0"), ("HYUNDAI", "regenAA0FC4ED71E|2025-04-08--22-57-50--0"),
("HYUNDAI2", "regen306779F6870|2024-10-03--04-03-23--0"), ("HYUNDAI2", "regenAFB9780D823|2025-04-08--23-00-34--0"),
("TOYOTA", "regen4A5115B248D|2025-03-04--03-21-43--0"), ("TOYOTA", "regen218A4DCFAA1|2025-04-08--22-57-51--0"),
("TOYOTA2", "regen6E484EDAB96|2024-08-30--02-47-37--0"), ("TOYOTA2", "regen107352E20EB|2025-04-08--22-57-46--0"),
("TOYOTA3", "8011d605be1cbb77|000000cc--8e8d8ec716--6"), ("TOYOTA3", "regen1455E3B4BDF|2025-04-09--03-26-06--0"),
("HONDA", "regenB8CABEC09CC|2025-03-04--03-32-55--0"), ("HONDA", "regenB328FF8BA0A|2025-04-08--22-57-45--0"),
("HONDA2", "regen4B38A7428CD|2024-08-30--02-56-31--0"), ("HONDA2", "regen6170C8C9A35|2025-04-08--22-57-46--0"),
("CHRYSLER", "regenF3DBBA9E8DF|2024-08-30--02-59-03--0"), ("CHRYSLER", "regen5B28FC2A437|2025-04-08--23-04-24--0"),
("RAM", "regenDB02684E00A|2024-08-30--03-02-54--0"), ("RAM", "regenBF81EA96E08|2025-04-08--23-06-54--0"),
("SUBARU", "regen5E3347D0A0F|2025-03-04--03-23-55--0"), ("SUBARU", "regen7366F13F6A1|2025-04-08--23-07-07--0"),
("GM", "regen9ADBECBCD1C|2024-08-30--03-13-04--0"), ("GM", "regen1271097D038|2025-04-09--03-26-00--0"),
("NISSAN", "regen58464878D07|2024-08-30--03-15-31--0"), ("NISSAN", "regen15D60604EAB|2025-04-08--23-06-59--0"),
("VOLKSWAGEN", "regenED976DEB757|2024-08-30--03-18-02--0"), ("VOLKSWAGEN", "regen0F2F06C9539|2025-04-08--23-06-56--0"),
("MAZDA", "regenACF84CCF482|2024-08-30--03-21-55--0"), ("MAZDA", "regenACF84CCF482|2024-08-30--03-21-55--0"),
("FORD", "regenA75209BD115|2025-03-04--03-23-53--0"), ("FORD", "regen755D8CB1E1F|2025-04-08--23-13-43--0"),
("RIVIAN", "bc095dc92e101734|000000db--ee9fe46e57--1"), ("RIVIAN", "regen5FCAC896BBE|2025-04-08--23-13-35--0"),
] ]
# dashcamOnly makes don't need to be tested until a full port is done # dashcamOnly makes don't need to be tested until a full port is done
@ -195,7 +195,7 @@ if __name__ == "__main__":
continue continue
# to speed things up, we only test all segments on card # to speed things up, we only test all segments on card
if cfg.proc_name != 'card' and car_brand not in ('HYUNDAI', 'TOYOTA', 'HONDA', 'SUBARU', 'FORD'): if cfg.proc_name != 'card' and car_brand not in ('HYUNDAI', 'TOYOTA', 'HONDA', 'SUBARU', 'FORD', 'RIVIAN'):
continue continue
cur_log_fn = os.path.join(FAKEDATA, f"{segment}_{cfg.proc_name}_{cur_commit}.zst") cur_log_fn = os.path.join(FAKEDATA, f"{segment}_{cfg.proc_name}_{cur_commit}.zst")

@ -44,7 +44,6 @@ PROCS = {
"./camerad": 10.0, "./camerad": 10.0,
"selfdrive.controls.plannerd": 9.0, "selfdrive.controls.plannerd": 9.0,
"./ui": 18.0, "./ui": 18.0,
"selfdrive.locationd.paramsd": 9.0,
"./sensord": 7.0, "./sensord": 7.0,
"selfdrive.controls.radard": 2.0, "selfdrive.controls.radard": 2.0,
"selfdrive.modeld.modeld": 22.0, "selfdrive.modeld.modeld": 22.0,
@ -53,6 +52,8 @@ PROCS = {
"selfdrive.locationd.calibrationd": 2.0, "selfdrive.locationd.calibrationd": 2.0,
"selfdrive.locationd.torqued": 5.0, "selfdrive.locationd.torqued": 5.0,
"selfdrive.locationd.locationd": 25.0, "selfdrive.locationd.locationd": 25.0,
"selfdrive.locationd.paramsd": 9.0,
"selfdrive.locationd.lagd": 11.0,
"selfdrive.ui.soundd": 3.0, "selfdrive.ui.soundd": 3.0,
"selfdrive.monitoring.dmonitoringd": 4.0, "selfdrive.monitoring.dmonitoringd": 4.0,
"./proclogd": 2.0, "./proclogd": 2.0,

@ -94,6 +94,7 @@ procs = [
PythonProcess("qcomgpsd", "system.qcomgpsd.qcomgpsd", qcomgps, enabled=TICI), PythonProcess("qcomgpsd", "system.qcomgpsd.qcomgpsd", qcomgps, enabled=TICI),
PythonProcess("pandad", "selfdrive.pandad.pandad", always_run), PythonProcess("pandad", "selfdrive.pandad.pandad", always_run),
PythonProcess("paramsd", "selfdrive.locationd.paramsd", only_onroad), PythonProcess("paramsd", "selfdrive.locationd.paramsd", only_onroad),
PythonProcess("lagd", "selfdrive.locationd.lagd", only_onroad),
NativeProcess("ubloxd", "system/ubloxd", ["./ubloxd"], ublox, enabled=TICI), NativeProcess("ubloxd", "system/ubloxd", ["./ubloxd"], ublox, enabled=TICI),
PythonProcess("pigeond", "system.ubloxd.pigeond", ublox, enabled=TICI), PythonProcess("pigeond", "system.ubloxd.pigeond", ublox, enabled=TICI),
PythonProcess("plannerd", "selfdrive.controls.plannerd", not_long_maneuver), PythonProcess("plannerd", "selfdrive.controls.plannerd", not_long_maneuver),

Loading…
Cancel
Save