system/ui: GPU-accelerated polygon rendering with anti-aliasing and gradients (#35357)

* Add GPU-accelerated polygon rendering with anti-aliased edges and gradient support

* use np array

* update ModelRenderer

* ndarray

* cleanup

* improve shader

* Revert "improve shader"

This reverts commit 992247617a.

* improve shader for smoother edges
pull/35366/head
Dean Lee 3 months ago committed by GitHub
parent feaef58188
commit 6c28575573
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
  1. 338
      system/ui/lib/shader_polygon.py
  2. 103
      system/ui/onroad/model_renderer.py

@ -0,0 +1,338 @@
import pyray as rl
import numpy as np
from typing import Any
FRAGMENT_SHADER = """
#version 300 es
precision mediump float;
in vec2 fragTexCoord;
out vec4 finalColor;
uniform vec2 points[100];
uniform int pointCount;
uniform vec4 fillColor;
uniform vec2 resolution;
uniform bool useGradient;
uniform vec2 gradientStart;
uniform vec2 gradientEnd;
uniform vec4 gradientColors[8];
uniform float gradientStops[8];
uniform int gradientColorCount;
vec4 getGradientColor(vec2 pos) {
vec2 gradientDir = gradientEnd - gradientStart;
float gradientLength = length(gradientDir);
if (gradientLength < 0.001) return gradientColors[0];
vec2 normalizedDir = gradientDir / gradientLength;
vec2 pointVec = pos - gradientStart;
float projection = dot(pointVec, normalizedDir);
float t = clamp(projection / gradientLength, 0.0, 1.0);
for (int i = 0; i < gradientColorCount - 1; i++) {
if (t >= gradientStops[i] && t <= gradientStops[i+1]) {
float segmentT = (t - gradientStops[i]) / (gradientStops[i+1] - gradientStops[i]);
return mix(gradientColors[i], gradientColors[i+1], segmentT);
}
}
return gradientColors[gradientColorCount-1];
}
bool isPointInsidePolygon(vec2 p) {
if (pointCount < 3) return false;
if (pointCount == 3) {
vec2 v0 = points[0];
vec2 v1 = points[1];
vec2 v2 = points[2];
float d = (v1.y - v2.y) * (v0.x - v2.x) + (v2.x - v1.x) * (v0.y - v2.y);
if (abs(d) < 0.0001) return false;
float a = ((v1.y - v2.y) * (p.x - v2.x) + (v2.x - v1.x) * (p.y - v2.y)) / d;
float b = ((v2.y - v0.y) * (p.x - v2.x) + (v0.x - v2.x) * (p.y - v2.y)) / d;
float c = 1.0 - a - b;
return (a >= 0.0 && b >= 0.0 && c >= 0.0);
}
bool inside = false;
for (int i = 0, j = pointCount - 1; i < pointCount; j = i++) {
if (distance(points[i], points[j]) < 0.0001) continue;
float dy = points[j].y - points[i].y;
if (abs(dy) < 0.0001) continue;
if (((points[i].y > p.y) != (points[j].y > p.y))) {
float x_intersect = points[i].x + (points[j].x - points[i].x) * (p.y - points[i].y) / dy;
if (p.x < x_intersect) {
inside = !inside;
}
}
}
return inside;
}
float distanceToEdge(vec2 p) {
float minDist = 1000.0;
for (int i = 0, j = pointCount - 1; i < pointCount; j = i++) {
vec2 edge0 = points[j];
vec2 edge1 = points[i];
if (distance(edge0, edge1) < 0.0001) continue;
vec2 v1 = p - edge0;
vec2 v2 = edge1 - edge0;
float l2 = dot(v2, v2);
if (l2 < 0.0001) {
float dist = length(v1);
minDist = min(minDist, dist);
continue;
}
float t = clamp(dot(v1, v2) / l2, 0.0, 1.0);
vec2 projection = edge0 + t * v2;
float dist = length(p - projection);
minDist = min(minDist, dist);
}
return minDist;
}
float signedDistanceToPolygon(vec2 p) {
float dist = distanceToEdge(p);
bool inside = isPointInsidePolygon(p);
return inside ? dist : -dist;
}
void main() {
vec2 pixel = fragTexCoord * resolution;
float signedDist = signedDistanceToPolygon(pixel);
vec2 pixelGrad = vec2(dFdx(pixel.x), dFdy(pixel.y));
float pixelSize = length(pixelGrad);
float aaWidth = max(0.5, pixelSize * 1.0);
float alpha = smoothstep(-aaWidth, aaWidth, signedDist);
if (alpha > 0.0) {
vec4 color;
if (useGradient) {
color = getGradientColor(fragTexCoord);
} else {
color = fillColor;
}
finalColor = vec4(color.rgb, color.a * alpha);
} else {
finalColor = vec4(0.0, 0.0, 0.0, 0.0);
}
}
"""
# Default vertex shader
VERTEX_SHADER = """
#version 300 es
in vec3 vertexPosition;
in vec2 vertexTexCoord;
out vec2 fragTexCoord;
uniform mat4 mvp;
void main() {
fragTexCoord = vertexTexCoord;
gl_Position = mvp * vec4(vertexPosition, 1.0);
}
"""
class ShaderState:
_instance: Any = None
@classmethod
def get_instance(cls):
if cls._instance is None:
cls._instance = cls()
return cls._instance
def __init__(self):
if ShaderState._instance is not None:
raise Exception("This class is a singleton. Use get_instance() instead.")
self.initialized = False
self.shader = None
self.white_texture = None
# Shader uniform locations
self.locations = {
'pointCount': None,
'fillColor': None,
'resolution': None,
'points': None,
'useGradient': None,
'gradientStart': None,
'gradientEnd': None,
'gradientColors': None,
'gradientStops': None,
'gradientColorCount': None,
'mvp': None,
}
def initialize(self):
if self.initialized:
return
vertex_shader = rl.load_shader_from_memory(VERTEX_SHADER, FRAGMENT_SHADER)
self.shader = vertex_shader
# Create and cache white texture
white_img = rl.gen_image_color(2, 2, rl.WHITE)
self.white_texture = rl.load_texture_from_image(white_img)
rl.set_texture_filter(self.white_texture, rl.TEXTURE_FILTER_BILINEAR)
rl.unload_image(white_img)
# Cache all uniform locations
for uniform in self.locations.keys():
self.locations[uniform] = rl.get_shader_location(self.shader, uniform)
# Setup default MVP matrix
mvp_ptr = rl.ffi.new("float[16]", [1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0])
rl.set_shader_value_matrix(self.shader, self.locations['mvp'], rl.Matrix(*mvp_ptr))
self.initialized = True
def cleanup(self):
if not self.initialized:
return
if self.white_texture:
rl.unload_texture(self.white_texture)
self.white_texture = None
if self.shader:
rl.unload_shader(self.shader)
self.shader = None
self.initialized = False
def draw_polygon(points: np.ndarray, color=None, gradient=None):
"""
Draw a complex polygon using shader-based even-odd fill rule
Args:
points: List of (x,y) points defining the polygon
color: Solid fill color (rl.Color)
gradient: Dict with gradient parameters:
{
'start': (x1, y1), # Start point (normalized 0-1)
'end': (x2, y2), # End point (normalized 0-1)
'colors': [rl.Color], # List of colors at stops
'stops': [float] # List of positions (0-1)
}
"""
if len(points) < 3:
return
# Get shader state singleton
state = ShaderState.get_instance()
# Initialize shader if not already done
if not state.initialized:
state.initialize()
# Find bounding box
min_xy = np.min(points, axis=0)
min_x, min_y = min_xy
max_x, max_y = np.max(points, axis=0)
width = max(1, max_x - min_x)
height = max(1, max_y - min_y)
# Transform points to shader space
transformed_points = points - min_xy
# Set basic shader uniforms using cached locations
point_count_ptr = rl.ffi.new("int[]", [len(transformed_points)])
rl.set_shader_value(state.shader, state.locations['pointCount'], point_count_ptr, rl.ShaderUniformDataType.SHADER_UNIFORM_INT)
resolution_ptr = rl.ffi.new("float[]", [width, height])
rl.set_shader_value(state.shader, state.locations['resolution'], resolution_ptr, rl.ShaderUniformDataType.SHADER_UNIFORM_VEC2)
# Set points
flat_points = np.ascontiguousarray(transformed_points.flatten().astype(np.float32))
points_ptr = rl.ffi.cast("float *", flat_points.ctypes.data)
rl.set_shader_value_v(
state.shader, state.locations['points'], points_ptr, rl.ShaderUniformDataType.SHADER_UNIFORM_VEC2, len(transformed_points)
)
# Set gradient or solid color based on what was provided
if gradient:
# Enable gradient
use_gradient_ptr = rl.ffi.new("int[]", [1])
rl.set_shader_value(state.shader, state.locations['useGradient'], use_gradient_ptr, rl.ShaderUniformDataType.SHADER_UNIFORM_INT)
# Set gradient start/end
start_ptr = rl.ffi.new("float[]", [gradient['start'][0], gradient['start'][1]])
end_ptr = rl.ffi.new("float[]", [gradient['end'][0], gradient['end'][1]])
rl.set_shader_value(state.shader, state.locations['gradientStart'], start_ptr, rl.ShaderUniformDataType.SHADER_UNIFORM_VEC2)
rl.set_shader_value(state.shader, state.locations['gradientEnd'], end_ptr, rl.ShaderUniformDataType.SHADER_UNIFORM_VEC2)
# Set gradient colors
colors = gradient['colors']
color_count = min(len(colors), 8) # Max 8 colors
colors_ptr = rl.ffi.new("float[]", color_count * 4)
for i, c in enumerate(colors[:color_count]):
colors_ptr[i * 4] = c.r / 255.0
colors_ptr[i * 4 + 1] = c.g / 255.0
colors_ptr[i * 4 + 2] = c.b / 255.0
colors_ptr[i * 4 + 3] = c.a / 255.0
rl.set_shader_value_v(
state.shader, state.locations['gradientColors'], colors_ptr, rl.ShaderUniformDataType.SHADER_UNIFORM_VEC4, color_count
)
# Set gradient stops
stops = gradient.get('stops', [i / (color_count - 1) for i in range(color_count)])
stops_ptr = rl.ffi.new("float[]", color_count)
for i, s in enumerate(stops[:color_count]):
stops_ptr[i] = s
rl.set_shader_value_v(
state.shader, state.locations['gradientStops'], stops_ptr, rl.ShaderUniformDataType.SHADER_UNIFORM_FLOAT, color_count
)
# Set color count
color_count_ptr = rl.ffi.new("int[]", [color_count])
rl.set_shader_value(state.shader, state.locations['gradientColorCount'], color_count_ptr, rl.ShaderUniformDataType.SHADER_UNIFORM_INT)
else:
# Disable gradient
use_gradient_ptr = rl.ffi.new("int[]", [0])
rl.set_shader_value(state.shader, state.locations['useGradient'], use_gradient_ptr, rl.ShaderUniformDataType.SHADER_UNIFORM_INT)
# Set solid color
if color is None:
color = rl.WHITE
fill_color_ptr = rl.ffi.new("float[]", [color.r / 255.0, color.g / 255.0, color.b / 255.0, color.a / 255.0])
rl.set_shader_value(state.shader, state.locations['fillColor'], fill_color_ptr, rl.ShaderUniformDataType.SHADER_UNIFORM_VEC4)
# Draw with shader
rl.begin_shader_mode(state.shader)
rl.draw_texture_pro(
state.white_texture,
rl.Rectangle(0, 0, 2, 2),
rl.Rectangle(int(min_x), int(min_y), int(width), int(height)),
rl.Vector2(0, 0),
0.0,
rl.WHITE,
)
rl.end_shader_mode()
def cleanup_shader_resources():
state = ShaderState.get_instance()
state.cleanup()

@ -4,6 +4,7 @@ import numpy as np
import pyray as rl
from cereal import messaging, car
from openpilot.common.params import Params
from openpilot.system.ui.lib.shader_polygon import draw_polygon
CLIP_MARGIN = 500
@ -30,14 +31,14 @@ class ModelRenderer:
self._experimental_mode = False
self._blend_factor = 1.0
self._prev_allow_throttle = True
self._lane_line_probs = [0.0] * 4
self._road_edge_stds = [0.0] * 2
self._lane_line_probs = np.zeros(4, dtype=np.float32)
self._road_edge_stds = np.zeros(2, dtype=np.float32)
self._path_offset_z = 1.22
# Initialize empty polygon vertices
self._track_vertices = []
self._lane_line_vertices = [[] for _ in range(4)]
self._road_edge_vertices = [[] for _ in range(2)]
self._track_vertices = np.empty((0, 2), dtype=np.float32)
self._lane_line_vertices = [np.empty((0, 2), dtype=np.float32) for _ in range(4)]
self._road_edge_vertices = [np.empty((0, 2), dtype=np.float32) for _ in range(2)]
self._lead_vertices = [None, None]
# Transform matrix (3x3 for car space to screen space)
@ -145,29 +146,29 @@ class ModelRenderer:
def _draw_lane_lines(self):
"""Draw lane lines and road edges"""
for i in range(4):
for i, vertices in enumerate(self._lane_line_vertices):
# Skip if no vertices
if not self._lane_line_vertices[i]:
if vertices.size == 0:
continue
# Draw lane line
alpha = np.clip(self._lane_line_probs[i], 0.0, 0.7)
color = rl.Color(255, 255, 255, int(alpha * 255))
self._draw_polygon(self._lane_line_vertices[i], color)
draw_polygon(vertices, color)
for i in range(2):
for i, vertices in enumerate(self._road_edge_vertices):
# Skip if no vertices
if not self._road_edge_vertices[i]:
if vertices.size == 0:
continue
# Draw road edge
alpha = np.clip(1.0 - self._road_edge_stds[i], 0.0, 1.0)
color = rl.Color(255, 0, 0, int(alpha * 255))
self._draw_polygon(self._road_edge_vertices[i], color)
draw_polygon(vertices, color)
def _draw_path(self, sm, model, height):
"""Draw the path polygon with gradient based on acceleration"""
if not self._track_vertices:
if self._track_vertices.size == 0:
return
if self._experimental_mode:
@ -175,16 +176,29 @@ class ModelRenderer:
acceleration = model.acceleration.x
max_len = min(len(self._track_vertices) // 2, len(acceleration))
# Create gradient colors for path sections
for i in range(max_len):
# Find midpoint index for polygon
mid_point = len(self._track_vertices) // 2
# For acceleration-based coloring, process segments separately
left_side = self._track_vertices[:mid_point]
right_side = self._track_vertices[mid_point:][::-1] # Reverse for proper winding
# Create segments for gradient coloring
segment_colors = []
gradient_stops = []
for i in range(max_len - 1):
if i >= len(left_side) - 1 or i >= len(right_side) - 1:
break
track_idx = max_len - i - 1 # flip idx to start from bottom right
track_y = self._track_vertices[track_idx][1]
# Skip points out of frame
if track_y < 0 or track_y > height:
if left_side[track_idx][1] < 0 or left_side[track_idx][1] > height:
continue
# Calculate color based on acceleration
lin_grad_point = (height - track_y) / height
lin_grad_point = (height - left_side[track_idx][1]) / height
# speed up: 120, slow down: 0
path_hue = max(min(60 + acceleration[i] * 35, 120), 0)
@ -197,12 +211,22 @@ class ModelRenderer:
# Use HSL to RGB conversion
color = self._hsla_to_color(path_hue / 360.0, saturation, lightness, alpha)
# TODO: This is simplified - a full implementation would create a gradient fill
segment = self._track_vertices[track_idx : track_idx + 2] + self._track_vertices[-track_idx - 2 : -track_idx]
self._draw_polygon(segment, color)
# Skip a point, unless next is last
i += 1 if i + 2 < max_len else 0
# Create quad segment
gradient_stops.append(lin_grad_point)
segment_colors.append(color)
if len(segment_colors) < 2:
draw_polygon(self._track_vertices, rl.Color(255, 255, 255, 30))
return
# Create gradient specification
gradient = {
'start': (0.0, 1.0), # Bottom of path
'end': (0.0, 0.0), # Top of path
'colors': segment_colors,
'stops': gradient_stops,
}
draw_polygon(self._track_vertices, gradient=gradient)
else:
# Draw with throttle/no throttle gradient
allow_throttle = sm['longitudinalPlan'].allowThrottle or not self._longitudinal_control
@ -226,7 +250,13 @@ class ModelRenderer:
self._blend_colors(begin_colors[2], end_colors[2], self._blend_factor),
]
self._draw_polygon(self._track_vertices, colors[0])
gradient = {
'start': (0.0, 1.0), # Bottom of path
'end': (0.0, 0.0), # Top of path
'colors': colors,
'stops': [0.0, 1.0],
}
draw_polygon(self._track_vertices, gradient=gradient)
def _draw_lead(self, lead_data, vd, rect):
"""Draw lead vehicle indicator"""
@ -284,14 +314,14 @@ class ModelRenderer:
return (x, y)
def _map_line_to_polygon(self, line, y_off, z_off, max_idx, allow_invert=True):
def _map_line_to_polygon(self, line, y_off, z_off, max_idx, allow_invert=True)-> np.ndarray:
"""Convert a 3D line to a 2D polygon for drawing"""
line_x = line.x
line_y = line.y
line_z = line.z
left_points = []
right_points = []
left_points: list[tuple[float, float]] = []
right_points: list[tuple[float, float]] = []
for i in range(max_idx + 1):
# Skip points with negative x (behind camera)
@ -309,23 +339,10 @@ class ModelRenderer:
left_points.append(left)
right_points.append(right)
if not left_points:
return []
return left_points + right_points[::-1]
def _draw_polygon(self, points, color):
# TODO: Enhance polygon drawing to support even-odd fill rule efficiently, as Raylib lacks native support.
# Use a faster triangulation algorithm (e.g., ear clipping) or GPU shader for
# efficient rendering of lane lines, road edges, and path polygons.
if len(points) <= 8:
rl.draw_triangle_fan(points, len(points), color)
else:
for i in range(1, len(points) - 1):
rl.draw_triangle(points[0], points[i], points[i + 1], color)
if not left_points or not right_points:
return np.empty((0, 2), dtype=np.float32)
for i in range(len(points)):
rl.draw_line_ex(points[i], points[(i + 1) % len(points)], 1.5, color)
return np.array(left_points + right_points[::-1], dtype=np.float32)
@staticmethod
def _map_val(x, x0, x1, y0, y1):

Loading…
Cancel
Save