work on acados lateral MPC (#23558)

* lat_mpc: make v_ego, rotation_radius parameters instead of states

* lat_mpc: remove rotation_radius argument, since it is part of the parameters

* lat_mpc: use qp_solver_cond_N = 1

slightly faster and in line with case study in Fig. 2/ 3 in Frison2016 - https://cdn.syscop.de/publications/Frison2016.pdf
An Efficient Implementation of Partial Condensing for Nonlinear Model Predictive Control

* adapt test_lateral_mpc to formulation with parameters

* lat_mpc: set parameters in reset() and copy values

* acados_ocp_solver_pyx: make options_set useable

* update ref

Co-authored-by: Willem Melching <willem.melching@gmail.com>
old-commit-hash: 0681474840
commatwo_master
Jonathan Frey 3 years ago committed by GitHub
parent fac18e0148
commit 6f4c93238f
  1. 4
      pyextra/acados_template/acados_ocp_solver_pyx.pyx
  2. 33
      selfdrive/controls/lib/lateral_mpc_lib/lat_mpc.py
  3. 10
      selfdrive/controls/lib/lateral_planner.py
  4. 6
      selfdrive/controls/tests/test_lateral_mpc.py
  5. 2
      selfdrive/test/process_replay/ref_commit

@ -1,3 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:4ec5899c033238f4815409cabdb109b5e7b833db9018a54345e927885bf12d1a
size 17627
oid sha256:9df0412c0f77fbf72ceb0ba8186e683f6b467521b7707156d7e2baa1f5d88430
size 17649

@ -17,7 +17,8 @@ else:
LAT_MPC_DIR = os.path.dirname(os.path.abspath(__file__))
EXPORT_DIR = os.path.join(LAT_MPC_DIR, "c_generated_code")
JSON_FILE = "acados_ocp_lat.json"
X_DIM = 6
X_DIM = 4
P_DIM = 2
def gen_lat_model():
model = AcadosModel()
@ -28,9 +29,12 @@ def gen_lat_model():
y_ego = SX.sym('y_ego')
psi_ego = SX.sym('psi_ego')
curv_ego = SX.sym('curv_ego')
model.x = vertcat(x_ego, y_ego, psi_ego, curv_ego)
# parameters
v_ego = SX.sym('v_ego')
rotation_radius = SX.sym('rotation_radius')
model.x = vertcat(x_ego, y_ego, psi_ego, curv_ego, v_ego, rotation_radius)
model.p = vertcat(v_ego, rotation_radius)
# controls
curv_rate = SX.sym('curv_rate')
@ -41,18 +45,14 @@ def gen_lat_model():
y_ego_dot = SX.sym('y_ego_dot')
psi_ego_dot = SX.sym('psi_ego_dot')
curv_ego_dot = SX.sym('curv_ego_dot')
v_ego_dot = SX.sym('v_ego_dot')
rotation_radius_dot = SX.sym('rotation_radius_dot')
model.xdot = vertcat(x_ego_dot, y_ego_dot, psi_ego_dot, curv_ego_dot,
v_ego_dot, rotation_radius_dot)
model.xdot = vertcat(x_ego_dot, y_ego_dot, psi_ego_dot, curv_ego_dot)
# dynamics model
f_expl = vertcat(v_ego * cos(psi_ego) - rotation_radius * sin(psi_ego) * (v_ego * curv_ego),
v_ego * sin(psi_ego) + rotation_radius * cos(psi_ego) * (v_ego * curv_ego),
v_ego * curv_ego,
curv_rate,
0.0,
0.0)
curv_rate)
model.f_impl_expr = model.xdot - f_expl
model.f_expl_expr = f_expl
return model
@ -79,8 +79,9 @@ def gen_lat_mpc_solver():
y_ego, psi_ego = ocp.model.x[1], ocp.model.x[2]
curv_rate = ocp.model.u[0]
v_ego = ocp.model.x[4]
v_ego = ocp.model.p[0]
ocp.parameter_values = np.zeros((P_DIM, ))
ocp.cost.yref = np.zeros((3, ))
ocp.cost.yref_e = np.zeros((2, ))
@ -96,7 +97,7 @@ def gen_lat_mpc_solver():
ocp.constraints.idxbx = np.array([2,3])
ocp.constraints.ubx = np.array([np.radians(90), np.radians(50)])
ocp.constraints.lbx = np.array([-np.radians(90), -np.radians(50)])
x0 = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0])
x0 = np.zeros((X_DIM,))
ocp.constraints.x0 = x0
ocp.solver_options.qp_solver = 'PARTIAL_CONDENSING_HPIPM'
@ -104,7 +105,7 @@ def gen_lat_mpc_solver():
ocp.solver_options.integrator_type = 'ERK'
ocp.solver_options.nlp_solver_type = 'SQP_RTI'
ocp.solver_options.qp_solver_iter_max = 1
ocp.solver_options.qp_solver_cond_N = N//4
ocp.solver_options.qp_solver_cond_N = 1
# set prediction horizon
ocp.solver_options.tf = Tf
@ -130,6 +131,7 @@ class LateralMpc():
# Somehow needed for stable init
for i in range(N+1):
self.solver.set(i, 'x', np.zeros(X_DIM))
self.solver.set(i, 'p', np.zeros(P_DIM))
self.solver.constraints_set(0, "lbx", x0)
self.solver.constraints_set(0, "ubx", x0)
self.solver.solve()
@ -144,14 +146,19 @@ class LateralMpc():
#TODO hacky weights to keep behavior the same
self.solver.cost_set(N, 'W', (3/20.)*W[:2,:2])
def run(self, x0, v_ego, car_rotation_radius, y_pts, heading_pts):
def run(self, x0, p, y_pts, heading_pts):
x0_cp = np.copy(x0)
p_cp = np.copy(p)
self.solver.constraints_set(0, "lbx", x0_cp)
self.solver.constraints_set(0, "ubx", x0_cp)
self.yref[:,0] = y_pts
v_ego = p_cp[0]
# rotation_radius = p_cp[1]
self.yref[:,1] = heading_pts*(v_ego+5.0)
for i in range(N):
self.solver.cost_set(i, "yref", self.yref[i])
self.solver.set(i, "p", p_cp)
self.solver.set(N, "p", p_cp)
self.solver.cost_set(N, "yref", self.yref[N][:2])
t = sec_since_boot()

@ -61,9 +61,9 @@ class LateralPlanner:
self.y_pts = np.zeros(TRAJECTORY_SIZE)
self.lat_mpc = LateralMpc()
self.reset_mpc(np.zeros(6))
self.reset_mpc(np.zeros(4))
def reset_mpc(self, x0=np.zeros(6)):
def reset_mpc(self, x0=np.zeros(4)):
self.x0 = x0
self.lat_mpc.reset(x0=self.x0)
@ -175,10 +175,10 @@ class LateralPlanner:
assert len(y_pts) == LAT_MPC_N + 1
assert len(heading_pts) == LAT_MPC_N + 1
self.x0[4] = v_ego
# self.x0[4] = v_ego
p = np.array([v_ego, CAR_ROTATION_RADIUS])
self.lat_mpc.run(self.x0,
v_ego,
CAR_ROTATION_RADIUS,
p,
y_pts,
heading_pts)
# init state for next

@ -14,12 +14,12 @@ def run_mpc(lat_mpc=None, v_ref=30., x_init=0., y_init=0., psi_init=0., curvatur
y_pts = poly_shift * np.ones(LAT_MPC_N + 1)
heading_pts = np.zeros(LAT_MPC_N + 1)
x0 = np.array([x_init, y_init, psi_init, curvature_init, v_ref, CAR_ROTATION_RADIUS])
x0 = np.array([x_init, y_init, psi_init, curvature_init])
p = np.array([v_ref, CAR_ROTATION_RADIUS])
# converge in no more than 10 iterations
for _ in range(10):
lat_mpc.run(x0, v_ref,
CAR_ROTATION_RADIUS,
lat_mpc.run(x0, p,
y_pts, heading_pts)
return lat_mpc.x_sol

@ -1 +1 @@
280a712ece99c231ea036c3b66d6aafa55548211
ef8a69dd1e52e2441d5c6155836a676ff98950a6
Loading…
Cancel
Save