diff --git a/Pipfile b/Pipfile index 1e526a5ec0..3958c890fe 100644 --- a/Pipfile +++ b/Pipfile @@ -84,6 +84,8 @@ urllib3 = "*" utm = "*" websocket_client = "*" hatanaka = "==2.4" +PyQt5 = "==5.15.4" +PyQt5-sip = "==12.9.0" [requires] python_version = "3.8" diff --git a/Pipfile.lock b/Pipfile.lock index b0ec993b2a..df2b3bb853 100644 --- a/Pipfile.lock +++ b/Pipfile.lock @@ -1,7 +1,7 @@ { "_meta": { "hash": { - "sha256": "50d3486820d05997c1e084e70362fa080e0a294faa01c7f1d43219e44f94a80b" + "sha256": "4dbfaf9d7a532e0e9a126f828512a5383a817722a1580ef64b99e2427f366a72" }, "pipfile-spec": 6, "requires": { @@ -146,7 +146,7 @@ "sha256:2857e29ff0d34db842cd7ca3230549d1a697f96ee6d3fb071cfa6c7393832597", "sha256:6881edbebdb17b39b4eaaa821b438bf6eddffb4468cf344f09f89def34a8b1df" ], - "markers": "python_version >= '3'", + "markers": "python_version >= '3.5'", "version": "==2.0.12" }, "click": { @@ -347,7 +347,7 @@ "sha256:84d9dd047ffa80596e0f246e2eab0b391788b0503584e8945f2368256d2735ff", "sha256:9d643ff0a55b762d5cdb124b8eaa99c66322e2157b69160bc32796e824360e6d" ], - "markers": "python_version >= '3'", + "markers": "python_version >= '3.5'", "version": "==3.3" }, "importlib-metadata": { @@ -371,7 +371,7 @@ "sha256:6f62d78e2f89b4500b080fe3a81690850cd254227f27f75c3a0c491a1f351ba7", "sha256:e8443a5e7a020e9d7f97f1d7d9cd17c88bcb3bc7e218bf9cf5095fe550be2951" ], - "markers": "python_version < '4.0' and python_full_version >= '3.6.1'", + "markers": "python_version < '4' and python_full_version >= '3.6.1'", "version": "==5.10.1" }, "itsdangerous": { @@ -687,33 +687,23 @@ }, "protobuf": { "hashes": [ - "sha256:06059eb6953ff01e56a25cd02cca1a9649a75a7e65397b5b9b4e929ed71d10cf", - "sha256:097c5d8a9808302fb0da7e20edf0b8d4703274d140fd25c5edabddcde43e081f", - "sha256:284f86a6207c897542d7e956eb243a36bb8f9564c1742b253462386e96c6b78f", - "sha256:32ca378605b41fd180dfe4e14d3226386d8d1b002ab31c969c366549e66a2bb7", - "sha256:3cc797c9d15d7689ed507b165cd05913acb992d78b379f6014e013f9ecb20996", - "sha256:62f1b5c4cd6c5402b4e2d63804ba49a327e0c386c99b1675c8a0fefda23b2067", - "sha256:69ccfdf3657ba59569c64295b7d51325f91af586f8d5793b734260dfe2e94e2c", - "sha256:6f50601512a3d23625d8a85b1638d914a0970f17920ff39cec63aaef80a93fb7", - "sha256:7403941f6d0992d40161aa8bb23e12575637008a5a02283a930addc0508982f9", - "sha256:755f3aee41354ae395e104d62119cb223339a8f3276a0cd009ffabfcdd46bb0c", - "sha256:77053d28427a29987ca9caf7b72ccafee011257561259faba8dd308fda9a8739", - "sha256:7e371f10abe57cee5021797126c93479f59fccc9693dafd6bd5633ab67808a91", - "sha256:9016d01c91e8e625141d24ec1b20fed584703e527d28512aa8c8707f105a683c", - "sha256:9be73ad47579abc26c12024239d3540e6b765182a91dbc88e23658ab71767153", - "sha256:adc31566d027f45efe3f44eeb5b1f329da43891634d61c75a5944e9be6dd42c9", - "sha256:adfc6cf69c7f8c50fd24c793964eef18f0ac321315439d94945820612849c388", - "sha256:af0ebadc74e281a517141daad9d0f2c5d93ab78e9d455113719a45a49da9db4e", - "sha256:cb29edb9eab15742d791e1025dd7b6a8f6fcb53802ad2f6e3adcb102051063ab", - "sha256:cd68be2559e2a3b84f517fb029ee611546f7812b1fdd0aa2ecc9bc6ec0e4fdde", - "sha256:cdee09140e1cd184ba9324ec1df410e7147242b94b5f8b0c64fc89e38a8ba531", - "sha256:db977c4ca738dd9ce508557d4fce0f5aebd105e158c725beec86feb1f6bc20d8", - "sha256:dd5789b2948ca702c17027c84c2accb552fc30f4622a98ab5c51fcfe8c50d3e7", - "sha256:e250a42f15bf9d5b09fe1b293bdba2801cd520a9f5ea2d7fb7536d4441811d20", - "sha256:ff8d8fa42675249bb456f5db06c00de6c2f4c27a065955917b28c4f15978b9c3" + "sha256:0d4719e724472e296062ba8e82a36d64693fcfdb550d9dff98af70ca79eafe3d", + "sha256:2b35602cb65d53c168c104469e714bf68670335044c38eee3c899d6a8af03ffc", + "sha256:32fff501b6df3050936d1839b80ea5899bf34db24792d223d7640611f67de15a", + "sha256:34400fd76f85bdae9a2e9c1444ea4699c0280962423eff4418765deceebd81b5", + "sha256:3767c64593a49c7ac0accd08ed39ce42744405f0989d468f0097a17496fdbe84", + "sha256:3f2ed842e8ca43b790cb4a101bcf577226e0ded98a6a6ba2d5e12095a08dc4da", + "sha256:52c1e44e25f2949be7ffa7c66acbfea940b0945dd416920231f7cb30ea5ac6db", + "sha256:5d9b5c8270461706973c3871c6fbdd236b51dfe9dab652f1fb6a36aa88287e47", + "sha256:72d357cc4d834cc85bd957e8b8e1f4b64c2eac9ca1a942efeb8eb2e723fca852", + "sha256:79cd8d0a269b714f6b32641f86928c718e8d234466919b3f552bfb069dbb159b", + "sha256:a4c0c6f2f95a559e59a0258d3e4b186f340cbdc5adec5ce1bc06d01972527c88", + "sha256:b309fda192850ac4184ca1777aab9655564bc8d10a9cc98f10e1c8bf11295c22", + "sha256:b3d7d4b4945fe3c001403b6c24442901a5e58c0a3059290f5a63523ed4435f82", + "sha256:c8829092c5aeb61619161269b2f8a2e36fd7cb26abbd9282d3bc453f02769146" ], "markers": "python_version >= '3.7'", - "version": "==3.20.1" + "version": "==4.21.1" }, "psutil": { "hashes": [ @@ -841,11 +831,11 @@ }, "pylint": { "hashes": [ - "sha256:095567c96e19e6f57b5b907e67d265ff535e588fe26b12b5ebe1fc5645b2c731", - "sha256:705c620d388035bdd9ff8b44c5bcdd235bfb49d276d488dd2c8ff1736aa42526" + "sha256:549261e0762c3466cc001024c4419c08252cb8c8d40f5c2c6966fea690e7fe2a", + "sha256:bb71e6d169506de585edea997e48d9ff20c0dc0e2fbc1d166bad6b640120326b" ], "index": "pypi", - "version": "==2.13.9" + "version": "==2.14.1" }, "pyopencl": { "hashes": [ @@ -890,6 +880,53 @@ "index": "pypi", "version": "==2022.1.5" }, + "pyqt5": { + "hashes": [ + "sha256:213bebd51821ed89b4d5b35bb10dbe67564228b3568f463a351a08e8b1677025", + "sha256:2a69597e0dd11caabe75fae133feca66387819fc9bc050f547e5551bce97e5be", + "sha256:883a549382fc22d29a0568f3ef20b38c8e7ab633a59498ac4eb63a3bf36d3fd3", + "sha256:8c0848ba790a895801d5bfd171da31cad3e551dbcc4e59677a3b622de2ceca98", + "sha256:a88526a271e846e44779bb9ad7a738c6d3c4a9d01e15a128ecfc6dd4696393b7" + ], + "index": "pypi", + "version": "==5.15.4" + }, + "pyqt5-qt5": { + "hashes": [ + "sha256:1988f364ec8caf87a6ee5d5a3a5210d57539988bf8e84714c7d60972692e2f4a", + "sha256:750b78e4dba6bdf1607febedc08738e318ea09e9b10aea9ff0d73073f11f6962", + "sha256:76980cd3d7ae87e3c7a33bfebfaee84448fd650bad6840471d6cae199b56e154", + "sha256:9cc7a768b1921f4b982ebc00a318ccb38578e44e45316c7a4a850e953e1dd327" + ], + "version": "==5.15.2" + }, + "pyqt5-sip": { + "hashes": [ + "sha256:055581c6fed44ba4302b70eeb82e979ff70400037358908f251cd85cbb3dbd93", + "sha256:0fc9aefacf502696710b36cdc9fa2a61487f55ee883dbcf2c2a6477e261546f7", + "sha256:42274a501ab4806d2c31659170db14c282b8313d2255458064666d9e70d96206", + "sha256:4347bd81d30c8e3181e553b3734f91658cfbdd8f1a19f254777f906870974e6d", + "sha256:485972daff2fb0311013f471998f8ec8262ea381bded244f9d14edaad5f54271", + "sha256:4f8e05fe01d54275877c59018d8e82dcdd0bc5696053a8b830eecea3ce806121", + "sha256:69a3ad4259172e2b1aa9060de211efac39ddd734a517b1924d9c6c0cc4f55f96", + "sha256:6a8701892a01a5a2a4720872361197cc80fdd5f49c8482d488ddf38c9c84f055", + "sha256:6d5bca2fc222d58e8093ee8a81a6e3437067bb22bc3f86d06ec8be721e15e90a", + "sha256:83c3220b1ca36eb8623ba2eb3766637b19eb0ce9f42336ad8253656d32750c0a", + "sha256:a25b9843c7da6a1608f310879c38e6434331aab1dc2fe6cb65c14f1ecf33780e", + "sha256:ac57d796c78117eb39edd1d1d1aea90354651efac9d3590aac67fa4983f99f1f", + "sha256:b09f4cd36a4831229fb77c424d89635fa937d97765ec90685e2f257e56a2685a", + "sha256:c446971c360a0a1030282a69375a08c78e8a61d568bfd6dab3dcc5cf8817f644", + "sha256:c5216403d4d8d857ec4a61f631d3945e44fa248aa2415e9ee9369ab7c8a4d0c7", + "sha256:d3e4489d7c2b0ece9d203ae66e573939f7f60d4d29e089c9f11daa17cfeaae32", + "sha256:d59af63120d1475b2bf94fe8062610720a9be1e8940ea146c7f42bb449d49067", + "sha256:d85002238b5180bce4b245c13d6face848faa1a7a9e5c6e292025004f2fd619a", + "sha256:d8b2bdff7bbf45bc975c113a03b14fd669dc0c73e1327f02706666a7dd51a197", + "sha256:dd05c768c2b55ffe56a9d49ce6cc77cdf3d53dbfad935258a9e347cbfd9a5850", + "sha256:fc43f2d7c438517ee33e929e8ae77132749c15909afab6aeece5fcf4147ffdb5" + ], + "index": "pypi", + "version": "==12.9.0" + }, "pyserial": { "hashes": [ "sha256:3c77e014170dfffbd816e6ffc205e9842efb10be9f58ec16d3e8675b4925cddb", @@ -954,74 +991,74 @@ }, "pyzmq": { "hashes": [ - "sha256:011a45c846ec69a3671ed15893b74b6ad608800c89ac6d0f0411e2137c6b313d", - "sha256:011f26841dd56ed87e464c98023dbbd4c0b3ab8802a045de3ea83e0187eb8145", - "sha256:0258563bf69f6ca305204354f171e0627a9bf8fe78c9d4f63a5e2447035cbb4b", - "sha256:07d2008e51718fba60641e5d1a0646b222b7929f16f6e7cf0834b8439f42c9e8", - "sha256:0a787f7870cba38d655c68ea7ae14bb6c3e9e19bb618d0c2412513321eeaeb80", - "sha256:0a89b9860d2171bcf674648dc8186db9cf3b773ad3c0610a2c7bf189cf3560b6", - "sha256:0de8a7e13ffacfe33c89acc0d7bfa2f5bde94e3f74b7f1e4d43c97ce17864d77", - "sha256:12a53f5c13edf12547ce495afebdd5ab11c1b67ea078a941b21e13161783741a", - "sha256:12eac2294d48ee27d1eaef7e214acedb394e4c95e3a1f6e4467099b82d58ef73", - "sha256:176be6c348dbec04e8e0d41e810743b7084b73e50954a6fedeeafc65d7fa9290", - "sha256:1d480d48253f61ff90115b8069ed32f51a0907eb19101c4a5ae0b9a5973e40ad", - "sha256:21792f4d0fcc5040978ee211c033e915d8b6608ea8a5b33fe197a04f0d43e991", - "sha256:277b3ebc684b369a57a186a9acf629c1b01247eb04d1105536ef2dae5f61168a", - "sha256:2f227150148e7c3db7ecd8a58500439979f556e15455841a30b6d121755b14bc", - "sha256:34b143751e9b2b89cf9b656081f1b2842a563c4c9ffc8465531875daf546e772", - "sha256:3f3807e81bf51d4c63eb12a21920614e0e840645418e9f2e3b5ffdd5991b3415", - "sha256:3fa7126d532effee452c0ab395ab3cbef1c06fd6870ab7e681f812ba9e685cfa", - "sha256:434044eec7f9df08fc5ca5c9bdd1a4bb08663679d43ebe7b9849713956f4d85f", - "sha256:4d861ae20040afc17adef33053c328667da78d4d3676b2936788fd031665e3a8", - "sha256:536491ad640448f14d8aa2dc497c354a348f216eb23513bf5aa0ac40e2b02577", - "sha256:5619f6598d6fd30778053ae2daa48a7c54029816648b908270b751411fd52e74", - "sha256:591b455546d34bb96aa453dd9666bddb8c81314e23dbf2606f9614acf7e73d9f", - "sha256:5a13171268f05d127e31b4c369b753733f67dbb0d765901ef625a115feb5c7de", - "sha256:5eaf7e0841d3d8d1d92838c8b56f98cb9bf35b14bcbe4efa281e4812ef4be728", - "sha256:6c09e6e5c4baf0959287943dc8170624d739ae555d334e896a94d9de01c7bb21", - "sha256:6e2093a97bf3f6008a4be6b5bae8ae3fc409f18373593bef19dd7b381ab8030c", - "sha256:7b518ad9cdbaaeb1a9da3444797698871ae2eeae34ff9a656d5150d37e1e42a1", - "sha256:7ca7d77f24644298cbe53bc279eb7ca05f3b8637473d392f0c9f34b37f08b49a", - "sha256:7eca5902ff41575d9a26f91fc750018b7eb129600ea600fe69ce852fbdfab4e2", - "sha256:8951830d6a00636b3af478091f9668ecc486f1dad01b975527957fd1d8c31bfd", - "sha256:8c234aefeef034c5d6de452e2af5173a95ea06315b685db703091e6f937a6e60", - "sha256:9273f6d1da1018822f41630fb0f3fe208e8e70e5d5e780795326900cfa22d8b6", - "sha256:9622d9560a6fd8d589816cdcec6946642cb4e070b3f68be1d3779b52cf240f73", - "sha256:9ef2d1476cea927ba33a29f59aa128ce3b174e81083cbd091dd3149af741c85d", - "sha256:9feb7ccd426ff2158ce79f4c87a8a1600ed4f77e65e2fffda2b42638b2bc73e4", - "sha256:a0b8528aefceb787f41ad429f3210a3c6b52e99f85413416e3d0c9e6d035f8ac", - "sha256:a2e4d70d34112997a32c8193fae2579aec854745f8730031e5d84cc579fd98ff", - "sha256:a37f0ec88e220326803084208d80229218b309d728954ab747ab21cca33424aa", - "sha256:a45f5c0477d12df05ef2e2922b49b7c0ae9d0f4ff9b6bb0d666558df0ef37122", - "sha256:a64b9cce166396df5f33894074d6515778d48c63aae5ee1abd86d8bbc5a711d8", - "sha256:a89285fedbeca483a855a77285453e21e4fc86ef0944bc018ef4b3033aa04ad2", - "sha256:a8f40604437ec8010f77f7053fd135ccb202d6ca18329903831087cab8dbdab1", - "sha256:b2a4af5e6fa85ee1743c725b46579f8de0b97024eb5ae1a0b5c5711adc436665", - "sha256:b97dc1273f16f85a38cff6668a07b636ef14e30591039efbfd21f5f91efae964", - "sha256:bdd008629293a0d4f00b516841ac0df89f17a64bc2d83bcfa48212d3f3b3ca1a", - "sha256:be3425dfdb9c46dc62d490fc1a6142a5f3dc6605ebb9048ae675056ef621413c", - "sha256:c2394bb857607494c3750b5040f852a1ad7831d7a7907b6106f0af2c70860cef", - "sha256:cb45b7ea577283b547b907a3389d62ca2eaddaf725fbb79cd360802440fa9c91", - "sha256:cd3f563b98e2a8730c93bdc550f119ae766b2d3da1f0d6a3c7735b59adfa1642", - "sha256:cda55ff0a7566405fb29ca38db1829fecb4c041b8dc3f91754f337bb7b27cbd8", - "sha256:df0b05fa4321b090abe5601dea9b1c8933c06f496588ccb397a0b1f9dfe32ebe", - "sha256:e464e7b1be2216eba54b47256c15bf307ae4a656aa0f73becea7b3e7283c5ac2", - "sha256:e730d490b1421e52b43b1b9f5e1f8c3973499206e188f29b582577531e11033b", - "sha256:e7ae3e520bd182a0cbfff3cc69dda3a2c26f69847e81bd3f090ed04471fc1282", - "sha256:e9631c6a339843e4f95efb80ff9a1bfaaf3d611ba9677a7a5cc61ffb923b4e06", - "sha256:f3daabbe42ca31712e29d906dfa4bf1890341d2fd5178de118bc9977a8d2b23b", - "sha256:fe8807d67456e7cf0e9a33b85e0d05bb9d2977dbdb23977e4cc2b843633618fd" - ], - "index": "pypi", - "version": "==23.0.0" + "sha256:057176dd3f5ccf5aad4abd662d76b6a39bbf799baaf2f39cd4fdaf2eab326e43", + "sha256:05ec90a8da618f2398f9d1aa20b18a9ef332992c6ac23e8c866099faad6ef0d6", + "sha256:154de02b15422af28b53d29a02de72121ba503634955017255573fc1f995143d", + "sha256:16b832adb5d8716f46051da5533c480250bf126984ce86804db6137a3a7f931b", + "sha256:1df26aa854bdd3a8341bf199064dd6aa6e240f2eaa3c9fa8d217e5d8b868c73e", + "sha256:28f9164fb2658b7b414fa0894c75b1a9c61375774cdc1bdb7298beb042a2cd87", + "sha256:2951c29b8649f3672af9dca8ff61d86310d3664d9629788b1c66422fb13b1239", + "sha256:2b08774057ae7ce8a2eb4e7d54db05358234440706ce43a85814500c5d7bd22e", + "sha256:2e2ac40f7a91c740ec68d6db07ae19ea9259c959333c68bee56ab2c799a67d66", + "sha256:312e56799410c34797417a4060a8bd37d4db1f06d1ec0c54f7c8fd81e0d90376", + "sha256:38f778a74e3889392e949326cfd0e9b2eb37dcbb2980d98fad2c51703d523db2", + "sha256:3955dd5bbbe02f454655296ee36a66c334c7102a29b8458223d168c0380edfd5", + "sha256:425ba851a6f9892bde1da2024d82e2fe6796bd77e3391fb96665c50fe9d4c6a5", + "sha256:48bbc2db041ab28eeee4a3e8ada0ed336640946dd5a8e53dbd3805f9dbdcf0dc", + "sha256:4fbcd657cda75574fd1315a4c44bd322bc2e219039fb09f146bbe6f8aef039e9", + "sha256:523ba7fd4d8fe75ad09c1e574a648892b75a97d0cfc8005727681053ac19555b", + "sha256:53b2c1326c2e484d450932d2be739f064b7cb572faabec38386098a28516a529", + "sha256:540d7146c3cdc9bbffab039ea067f494eba24d1abe5bd33eb9f963c01e3305d4", + "sha256:563d4281c4dbdf647d93114420151d33f895afc4c46b7115a67a0aa5347e6624", + "sha256:67a049bcf967a39993858beed873ed3405536019820922d4efacfe35ab3da51a", + "sha256:67ec63ae3c9c1fa2e077fcb42e77035e2121a04f987464bdf9945a28535d30ad", + "sha256:68e22c5d3be451e87d47f956b397a7823bfbde2176341bc902fba30f96831d7e", + "sha256:6ab4b6108e69f63c917cd7ef7217c5727955b1ac90600e44a13ed5312019a014", + "sha256:6bd7f18bd4cf51ea8d7e54825902cf36f9d2f35cc51ef618373988d5398b8dd0", + "sha256:6cd53e861bccc0bdc4620f68fb4a91d5bcfe9f4213cf8e200fa498044d33a6dc", + "sha256:6d346e551fa64b89d57a4ac74b9bc66703413f02f50093e089e861999ec5cccc", + "sha256:6ff8708fabc9f9bc2949f457d39b4088c9656c4c9ac15fbbbbaafce8f6d07833", + "sha256:7626e8384275a7dea6f3d1f749fb5e00299042e9c895fc3dbe24cb154909c242", + "sha256:7e7346b2b33dcd4a2171dd8a9870ae283eec8f6231dcbcf237a0f41e74751a50", + "sha256:81623c67cb71b93b5f7e06c9107f3781738ae86866db830c950223d87af2a235", + "sha256:83f1c76068faf62c32a36dd62dc4db642c2027bbbd960f8f6345b59e9d4dc472", + "sha256:8679bb1dd723ecbea03b1f96c98972815775fd8ec756c440a14f289c436c472e", + "sha256:86fb683cb9a9c0bb7476988b7957393ecdd22777d87d804442c66e62c99197f9", + "sha256:8757c62f7960cd26122f7aaaf86eda1e016fa85734c3777b8054dd334d7dea4d", + "sha256:894be7d17228e7328cc188096c0162697211ec91761f6812fff12790cbe11c66", + "sha256:8a0f240bf43c29be1bd82d77e602a61c798e9de02e5f8bb7bb414cb814f43236", + "sha256:8c3abf7eab5b76ae162c4fbb16d514a947fc57fd995b64e5ea8ef8ba3b888a69", + "sha256:93332c6972e4c91522c4810e907f3aea067424338071161b39cacded022559df", + "sha256:97d6c676dc97d593625d9fc48154f2ffeabb619a1e6fe8d2a5b53f97e3e9bdee", + "sha256:99dd85f0ca1db8d17a01a25c2bbb7784d25a2d39497c6beddbe96bff74194e04", + "sha256:9c7fb691fb07ec7ab99fd173bb0e7e0248d31bf83d484a87b917a342f63812c9", + "sha256:b3bc3cf200aab74f3d758586ac50295214eda496ac6a6636e0c881c5958d9123", + "sha256:bba54f97578943f48f621b4a7afb8eb022370da26a88b88ccc9fee9f3ef7ce45", + "sha256:bd2a13a0f8367e50347cbac87ae230ae1953935443240238f956bf10668bead6", + "sha256:cbc1184349ca6e5112898aa7fc3efa1b1bbae24ab1edc774cfd09cbfd3b091d7", + "sha256:cd82cca9c489e441574804dbda2dd8e114cf3be7935b03de11dade2c9478aea6", + "sha256:ce8ba5ed8b0a7a203922d61cff45ee6001a41a9359f04f00d055a4e988755569", + "sha256:cfee22e072a382b92ee0709dbb8203dabd52d54258051e770d9d2a81b162530b", + "sha256:d977df6f7c4109ed1d96ffb6795f6af77114be606ae4556efbfc9cac725db65d", + "sha256:da72a384a1d7e87490ca71182f3ab469ed21d847adc16b70c34faac5a3b12801", + "sha256:ddf4ad1d651e6c9234945061e1a31fe27a4be0dea21c498b87b186fadf8f5919", + "sha256:eb0ae5dfda83bbce660179d7b41c1c38fd833a54d2e6d9b258c644f3b75ef94d", + "sha256:f4c7d370badc60ac94a554bc571a46d03e39d8aacfba8006b334512e184aed59", + "sha256:f6c378b435a26fda8996579c0e324b108d2ca0d01b4661503a75634e5155559f", + "sha256:f6c9d30888503f2f5f87d6d41f016301352dd98da4a861bd10663c3a2d99d3b5", + "sha256:fab8a7877275060f7b303e1f91c218069a2814a616b6a5ee2d8a3737deb15915", + "sha256:fc32e7d7f98cac3d8d5153ed2cb583158ae3d446a6efb8e28ccb1c54a09f4169" + ], + "index": "pypi", + "version": "==23.1.0" }, "requests": { "hashes": [ - "sha256:68d7c56fd5a8999887728ef304a6d12edc7be74f1cfa47714fc8b414525c9a61", - "sha256:f22fa1e554c9ddfd16e6e41ac79759e17be9e492b3587efa038054674760e72d" + "sha256:bc7861137fbce630f17b03d3ad02ad0bf978c844f3536d0edda6499dafce2b6f", + "sha256:d568723a7ebd25875d8d1eaf5dfa068cd2fc8194b2e483d7b1f7c81918dbec6b" ], "index": "pypi", - "version": "==2.27.1" + "version": "==2.28.0" }, "scons": { "hashes": [ @@ -1118,11 +1155,11 @@ }, "setuptools": { "hashes": [ - "sha256:68e45d17c9281ba25dc0104eadd2647172b3472d9e01f911efa57965e8d51a36", - "sha256:a43bdedf853c670e5fed28e5623403bad2f73cf02f9a2774e91def6bda8265a7" + "sha256:d1746e7fd520e83bbe210d02fff1aa1a425ad671c7a9da7d246ec2401a087198", + "sha256:e7d11f3db616cda0751372244c2ba798e8e56a28e096ec4529010b803485f3fe" ], "markers": "python_version >= '3.7'", - "version": "==62.3.2" + "version": "==62.3.3" }, "six": { "hashes": [ @@ -1134,11 +1171,11 @@ }, "smbus2": { "hashes": [ - "sha256:6276eb599b76c4e74372f2582d2282f03b4398f0da16bc996608e4f21557ca9b", - "sha256:8b1e70cda011b6fb3caf8377a1084f73a5aa99392b78529f140b0a3f06468f6c" + "sha256:50f3c78e436b42a9583948be06961a8104cf020ebad5edfaaf2657528bef0818", + "sha256:634541ed794068a822fe7499f1577468b9d4641b68dd9bfb6d0eb7270f4d2a32" ], "index": "pypi", - "version": "==0.4.1" + "version": "==0.4.2" }, "sympy": { "hashes": [ @@ -1150,11 +1187,11 @@ }, "timezonefinder": { "hashes": [ - "sha256:90228f7bcf60388868ac95d3d6a8c9f710c766990909cb89dc39a893da7132ad", - "sha256:ce16831bc6349a82ca25ffc0e4c89df5bc5df29b286e5201701bce852f8e49f2" + "sha256:0471463083b5fef7a656c7e31a7376fa1941bf6a41a0750c6e0ca151e43646e7", + "sha256:2e8e958814f21fa809b16e98bd2f99082b69a0f88b864a4a1f2944d5a7e61827" ], "index": "pypi", - "version": "==6.0.0" + "version": "==6.0.1" }, "tomli": { "hashes": [ @@ -1164,6 +1201,14 @@ "markers": "python_version < '3.11'", "version": "==2.0.1" }, + "tomlkit": { + "hashes": [ + "sha256:0f4050db66fd445b885778900ce4dd9aea8c90c4721141fde0d6ade893820ef1", + "sha256:71ceb10c0eefd8b8f11fe34e8a51ad07812cb1dc3de23247425fbc9ddc47b9dd" + ], + "markers": "python_version >= '3.6' and python_version < '4'", + "version": "==0.11.0" + }, "tqdm": { "hashes": [ "sha256:40be55d30e200777a307a7585aee69e4eabb46b4ec6a4b4a5f2d9f11e7d5408d", @@ -1496,62 +1541,62 @@ "sha256:2857e29ff0d34db842cd7ca3230549d1a697f96ee6d3fb071cfa6c7393832597", "sha256:6881edbebdb17b39b4eaaa821b438bf6eddffb4468cf344f09f89def34a8b1df" ], - "markers": "python_version >= '3'", + "markers": "python_version >= '3.5'", "version": "==2.0.12" }, "control": { "hashes": [ - "sha256:8c9084bf386eafcf5d74008f780fae6dec68d243d18a380c866ac10a3549f8d3" + "sha256:0891d2d32d6006ac1faa4e238ed8223ca342a4721d202dfeccae24fb02563183" ], "index": "pypi", - "version": "==0.9.1" + "version": "==0.9.2" }, "coverage": { "hashes": [ - "sha256:00c8544510f3c98476bbd58201ac2b150ffbcce46a8c3e4fb89ebf01998f806a", - "sha256:016d7f5cf1c8c84f533a3c1f8f36126fbe00b2ec0ccca47cc5731c3723d327c6", - "sha256:03014a74023abaf5a591eeeaf1ac66a73d54eba178ff4cb1fa0c0a44aae70383", - "sha256:033ebec282793bd9eb988d0271c211e58442c31077976c19c442e24d827d356f", - "sha256:21e6686a95025927775ac501e74f5940cdf6fe052292f3a3f7349b0abae6d00f", - "sha256:26f8f92699756cb7af2b30720de0c5bb8d028e923a95b6d0c891088025a1ac8f", - "sha256:2e76bd16f0e31bc2b07e0fb1379551fcd40daf8cdf7e24f31a29e442878a827c", - "sha256:341e9c2008c481c5c72d0e0dbf64980a4b2238631a7f9780b0fe2e95755fb018", - "sha256:3cfd07c5889ddb96a401449109a8b97a165be9d67077df6802f59708bfb07720", - "sha256:4002f9e8c1f286e986fe96ec58742b93484195defc01d5cc7809b8f7acb5ece3", - "sha256:50ed480b798febce113709846b11f5d5ed1e529c88d8ae92f707806c50297abf", - "sha256:543e172ce4c0de533fa892034cce260467b213c0ea8e39da2f65f9a477425211", - "sha256:5a78cf2c43b13aa6b56003707c5203f28585944c277c1f3f109c7b041b16bd39", - "sha256:5cd698341626f3c77784858427bad0cdd54a713115b423d22ac83a28303d1d95", - "sha256:60c2147921da7f4d2d04f570e1838db32b95c5509d248f3fe6417e91437eaf41", - "sha256:62d382f7d77eeeaff14b30516b17bcbe80f645f5cf02bb755baac376591c653c", - "sha256:69432946f154c6add0e9ede03cc43b96e2ef2733110a77444823c053b1ff5166", - "sha256:727dafd7f67a6e1cad808dc884bd9c5a2f6ef1f8f6d2f22b37b96cb0080d4f49", - "sha256:742fb8b43835078dd7496c3c25a1ec8d15351df49fb0037bffb4754291ef30ce", - "sha256:750e13834b597eeb8ae6e72aa58d1d831b96beec5ad1d04479ae3772373a8088", - "sha256:7b546cf2b1974ddc2cb222a109b37c6ed1778b9be7e6b0c0bc0cf0438d9e45a6", - "sha256:83bd142cdec5e4a5c4ca1d4ff6fa807d28460f9db919f9f6a31babaaa8b88426", - "sha256:8d2e80dd3438e93b19e1223a9850fa65425e77f2607a364b6fd134fcd52dc9df", - "sha256:9229d074e097f21dfe0643d9d0140ee7433814b3f0fc3706b4abffd1e3038632", - "sha256:968ed5407f9460bd5a591cefd1388cc00a8f5099de9e76234655ae48cfdbe2c3", - "sha256:9c82f2cd69c71698152e943f4a5a6b83a3ab1db73b88f6e769fabc86074c3b08", - "sha256:a00441f5ea4504f5abbc047589d09e0dc33eb447dc45a1a527c8b74bfdd32c65", - "sha256:a022394996419142b33a0cf7274cb444c01d2bb123727c4bb0b9acabcb515dea", - "sha256:af5b9ee0fc146e907aa0f5fb858c3b3da9199d78b7bb2c9973d95550bd40f701", - "sha256:b5578efe4038be02d76c344007b13119b2b20acd009a88dde8adec2de4f630b5", - "sha256:b84ab65444dcc68d761e95d4d70f3cfd347ceca5a029f2ffec37d4f124f61311", - "sha256:c53ad261dfc8695062fc8811ac7c162bd6096a05a19f26097f411bdf5747aee7", - "sha256:cc173f1ce9ffb16b299f51c9ce53f66a62f4d975abe5640e976904066f3c835d", - "sha256:d548edacbf16a8276af13063a2b0669d58bbcfca7c55a255f84aac2870786a61", - "sha256:d55fae115ef9f67934e9f1103c9ba826b4c690e4c5bcf94482b8b2398311bf9c", - "sha256:d8099ea680201c2221f8468c372198ceba9338a5fec0e940111962b03b3f716a", - "sha256:e35217031e4b534b09f9b9a5841b9344a30a6357627761d4218818b865d45055", - "sha256:e4f52c272fdc82e7c65ff3f17a7179bc5f710ebc8ce8a5cadac81215e8326740", - "sha256:e637ae0b7b481905358624ef2e81d7fb0b1af55f5ff99f9ba05442a444b11e45", - "sha256:eef5292b60b6de753d6e7f2d128d5841c7915fb1e3321c3a1fe6acfe76c38052", - "sha256:fb45fe08e1abc64eb836d187b20a59172053999823f7f6ef4f18a819c44ba16f" - ], - "index": "pypi", - "version": "==6.4" + "sha256:01c5615d13f3dd3aa8543afc069e5319cfa0c7d712f6e04b920431e5c564a749", + "sha256:106c16dfe494de3193ec55cac9640dd039b66e196e4641fa8ac396181578b982", + "sha256:129cd05ba6f0d08a766d942a9ed4b29283aff7b2cccf5b7ce279d50796860bb3", + "sha256:145f296d00441ca703a659e8f3eb48ae39fb083baba2d7ce4482fb2723e050d9", + "sha256:1480ff858b4113db2718848d7b2d1b75bc79895a9c22e76a221b9d8d62496428", + "sha256:269eaa2c20a13a5bf17558d4dc91a8d078c4fa1872f25303dddcbba3a813085e", + "sha256:26dff09fb0d82693ba9e6231248641d60ba606150d02ed45110f9ec26404ed1c", + "sha256:2bd9a6fc18aab8d2e18f89b7ff91c0f34ff4d5e0ba0b33e989b3cd4194c81fd9", + "sha256:309ce4a522ed5fca432af4ebe0f32b21d6d7ccbb0f5fcc99290e71feba67c264", + "sha256:3384f2a3652cef289e38100f2d037956194a837221edd520a7ee5b42d00cc605", + "sha256:342d4aefd1c3e7f620a13f4fe563154d808b69cccef415415aece4c786665397", + "sha256:39ee53946bf009788108b4dd2894bf1349b4e0ca18c2016ffa7d26ce46b8f10d", + "sha256:4321f075095a096e70aff1d002030ee612b65a205a0a0f5b815280d5dc58100c", + "sha256:4803e7ccf93230accb928f3a68f00ffa80a88213af98ed338a57ad021ef06815", + "sha256:4ce1b258493cbf8aec43e9b50d89982346b98e9ffdfaae8ae5793bc112fb0068", + "sha256:664a47ce62fe4bef9e2d2c430306e1428ecea207ffd68649e3b942fa8ea83b0b", + "sha256:75ab269400706fab15981fd4bd5080c56bd5cc07c3bccb86aab5e1d5a88dc8f4", + "sha256:83c4e737f60c6936460c5be330d296dd5b48b3963f48634c53b3f7deb0f34ec4", + "sha256:84631e81dd053e8a0d4967cedab6db94345f1c36107c71698f746cb2636c63e3", + "sha256:84e65ef149028516c6d64461b95a8dbcfce95cfd5b9eb634320596173332ea84", + "sha256:865d69ae811a392f4d06bde506d531f6a28a00af36f5c8649684a9e5e4a85c83", + "sha256:87f4f3df85aa39da00fd3ec4b5abeb7407e82b68c7c5ad181308b0e2526da5d4", + "sha256:8c08da0bd238f2970230c2a0d28ff0e99961598cb2e810245d7fc5afcf1254e8", + "sha256:961e2fb0680b4f5ad63234e0bf55dfb90d302740ae9c7ed0120677a94a1590cb", + "sha256:9b3e07152b4563722be523e8cd0b209e0d1a373022cfbde395ebb6575bf6790d", + "sha256:a7f3049243783df2e6cc6deafc49ea123522b59f464831476d3d1448e30d72df", + "sha256:bf5601c33213d3cb19d17a796f8a14a9eaa5e87629a53979a5981e3e3ae166f6", + "sha256:cec3a0f75c8f1031825e19cd86ee787e87cf03e4fd2865c79c057092e69e3a3b", + "sha256:d42c549a8f41dc103a8004b9f0c433e2086add8a719da00e246e17cbe4056f72", + "sha256:d67d44996140af8b84284e5e7d398e589574b376fb4de8ccd28d82ad8e3bea13", + "sha256:d9c80df769f5ec05ad21ea34be7458d1dc51ff1fb4b2219e77fe24edf462d6df", + "sha256:e57816f8ffe46b1df8f12e1b348f06d164fd5219beba7d9433ba79608ef011cc", + "sha256:ee2ddcac99b2d2aec413e36d7a429ae9ebcadf912946b13ffa88e7d4c9b712d6", + "sha256:f02cbbf8119db68455b9d763f2f8737bb7db7e43720afa07d8eb1604e5c5ae28", + "sha256:f1d5aa2703e1dab4ae6cf416eb0095304f49d004c39e9db1d86f57924f43006b", + "sha256:f5b66caa62922531059bc5ac04f836860412f7f88d38a476eda0a6f11d4724f4", + "sha256:f69718750eaae75efe506406c490d6fc5a6161d047206cc63ce25527e8a3adad", + "sha256:fb73e0011b8793c053bfa85e53129ba5f0250fdc0392c1591fd35d915ec75c46", + "sha256:fd180ed867e289964404051a958f7cccabdeed423f91a899829264bb7974d3d3", + "sha256:fdb6f7bd51c2d1714cea40718f6149ad9be6a2ee7d93b19e9f00934c0f2a74d9", + "sha256:ffa9297c3a453fba4717d06df579af42ab9a28022444cae7fa605af4df612d54" + ], + "index": "pypi", + "version": "==6.4.1" }, "cryptography": { "hashes": [ @@ -1665,11 +1710,11 @@ }, "filelock": { "hashes": [ - "sha256:b795f1b42a61bbf8ec7113c341dad679d772567b936fbd1bf43c9a238e673e20", - "sha256:c7b5fdb219b398a5b28c8e4c1893ef5f98ece6a38c6ab2c22e26ec161556fed6" + "sha256:37def7b658813cda163b56fc564cdc75e86d338246458c4c28ae84cabefa2404", + "sha256:3a0fd85166ad9dbab54c9aec96737b744106dc5f15c0b09a6744a445299fcf04" ], "markers": "python_version >= '3.7'", - "version": "==3.7.0" + "version": "==3.7.1" }, "fonttools": { "hashes": [ @@ -1688,11 +1733,11 @@ }, "hypothesis": { "hashes": [ - "sha256:2696cdb9005946bf1d2b215cc91d3fc01625e3342eb8743ddd04b667b2f1882b", - "sha256:967009fa561b3a3f8363a73d71923357271c37dc7fa27b30c2d21a1b6092b240" + "sha256:4ad26c5d434171ffc02aba569dd52255573d615554c062bc30734dbe6f318c61", + "sha256:69978811f1d9c19710c7d2bf8233dc43c80efa964251b72efbe8274044e073b4" ], "index": "pypi", - "version": "==6.46.7" + "version": "==6.47.1" }, "identify": { "hashes": [ @@ -1707,7 +1752,7 @@ "sha256:84d9dd047ffa80596e0f246e2eab0b391788b0503584e8945f2368256d2735ff", "sha256:9d643ff0a55b762d5cdb124b8eaa99c66322e2157b69160bc32796e824360e6d" ], - "markers": "python_version >= '3'", + "markers": "python_version >= '3.5'", "version": "==3.3" }, "imagesize": { @@ -1918,41 +1963,40 @@ }, "mpld3": { "hashes": [ - "sha256:3626d37da7ac11d0fce4dd5ceb37d04ba618bf951129bf6ca3f94bf48da87d6f", - "sha256:b1290f6cca2d9515e32ee21a8b0c18b2ea361cefce58ba0f4df881e9eeb3f64c", - "sha256:c589db8b661aee25c93e198e2e18ed47b9a96951de41d96241345acec5f819ab" + "sha256:1a167dbef836dd7c66d8aa71c06a32d50bffa18725f304d93cb74fdb3545043b", + "sha256:41938e65de4ba41a1b53d92e7c8609e7172e09b33ef5db42bb6f73701106c8b7" ], "index": "pypi", - "version": "==0.5.7" + "version": "==0.5.8" }, "mypy": { "hashes": [ - "sha256:0112752a6ff07230f9ec2f71b0d3d4e088a910fdce454fdb6553e83ed0eced7d", - "sha256:0384d9f3af49837baa92f559d3fa673e6d2652a16550a9ee07fc08c736f5e6f8", - "sha256:1b333cfbca1762ff15808a0ef4f71b5d3eed8528b23ea1c3fb50543c867d68de", - "sha256:1fdeb0a0f64f2a874a4c1f5271f06e40e1e9779bf55f9567f149466fc7a55038", - "sha256:4c653e4846f287051599ed8f4b3c044b80e540e88feec76b11044ddc5612ffed", - "sha256:563514c7dc504698fb66bb1cf897657a173a496406f1866afae73ab5b3cdb334", - "sha256:5b231afd6a6e951381b9ef09a1223b1feabe13625388db48a8690f8daa9b71ff", - "sha256:5ce6a09042b6da16d773d2110e44f169683d8cc8687e79ec6d1181a72cb028d2", - "sha256:5e7647df0f8fc947388e6251d728189cfadb3b1e558407f93254e35abc026e22", - "sha256:6003de687c13196e8a1243a5e4bcce617d79b88f83ee6625437e335d89dfebe2", - "sha256:61504b9a5ae166ba5ecfed9e93357fd51aa693d3d434b582a925338a2ff57fd2", - "sha256:77423570c04aca807508a492037abbd72b12a1fb25a385847d191cd50b2c9605", - "sha256:a4d9898f46446bfb6405383b57b96737dcfd0a7f25b748e78ef3e8c576bba3cb", - "sha256:a952b8bc0ae278fc6316e6384f67bb9a396eb30aced6ad034d3a76120ebcc519", - "sha256:b5b5bd0ffb11b4aba2bb6d31b8643902c48f990cc92fda4e21afac658044f0c0", - "sha256:ca75ecf2783395ca3016a5e455cb322ba26b6d33b4b413fcdedfc632e67941dc", - "sha256:cf9c261958a769a3bd38c3e133801ebcd284ffb734ea12d01457cb09eacf7d7b", - "sha256:dd4d670eee9610bf61c25c940e9ade2d0ed05eb44227275cce88701fee014b1f", - "sha256:e19736af56947addedce4674c0971e5dceef1b5ec7d667fe86bcd2b07f8f9075", - "sha256:eaea21d150fb26d7b4856766e7addcf929119dd19fc832b22e71d942835201ef", - "sha256:eaff8156016487c1af5ffa5304c3e3fd183edcb412f3e9c72db349faf3f6e0eb", - "sha256:ee0a36edd332ed2c5208565ae6e3a7afc0eabb53f5327e281f2ef03a6bc7687a", - "sha256:ef7beb2a3582eb7a9f37beaf38a28acfd801988cde688760aea9e6cc4832b10b" - ], - "index": "pypi", - "version": "==0.950" + "sha256:006be38474216b833eca29ff6b73e143386f352e10e9c2fbe76aa8549e5554f5", + "sha256:03c6cc893e7563e7b2949b969e63f02c000b32502a1b4d1314cabe391aa87d66", + "sha256:0e9f70df36405c25cc530a86eeda1e0867863d9471fe76d1273c783df3d35c2e", + "sha256:1ece702f29270ec6af25db8cf6185c04c02311c6bb21a69f423d40e527b75c56", + "sha256:3e09f1f983a71d0672bbc97ae33ee3709d10c779beb613febc36805a6e28bb4e", + "sha256:439c726a3b3da7ca84a0199a8ab444cd8896d95012c4a6c4a0d808e3147abf5d", + "sha256:5a0b53747f713f490affdceef835d8f0cb7285187a6a44c33821b6d1f46ed813", + "sha256:5f1332964963d4832a94bebc10f13d3279be3ce8f6c64da563d6ee6e2eeda932", + "sha256:63e85a03770ebf403291ec50097954cc5caf2a9205c888ce3a61bd3f82e17569", + "sha256:64759a273d590040a592e0f4186539858c948302c653c2eac840c7a3cd29e51b", + "sha256:697540876638ce349b01b6786bc6094ccdaba88af446a9abb967293ce6eaa2b0", + "sha256:9940e6916ed9371809b35b2154baf1f684acba935cd09928952310fbddaba648", + "sha256:9f5f5a74085d9a81a1f9c78081d60a0040c3efb3f28e5c9912b900adf59a16e6", + "sha256:a5ea0875a049de1b63b972456542f04643daf320d27dc592d7c3d9cd5d9bf950", + "sha256:b117650592e1782819829605a193360a08aa99f1fc23d1d71e1a75a142dc7e15", + "sha256:b24be97351084b11582fef18d79004b3e4db572219deee0212078f7cf6352723", + "sha256:b88f784e9e35dcaa075519096dc947a388319cb86811b6af621e3523980f1c8a", + "sha256:bdd5ca340beffb8c44cb9dc26697628d1b88c6bddf5c2f6eb308c46f269bb6f3", + "sha256:d5aaf1edaa7692490f72bdb9fbd941fbf2e201713523bdb3f4038be0af8846c6", + "sha256:e999229b9f3198c0c880d5e269f9f8129c8862451ce53a011326cad38b9ccd24", + "sha256:f4a21d01fc0ba4e31d82f0fff195682e29f9401a8bdb7173891070eb260aeb3b", + "sha256:f4b794db44168a4fc886e3450201365c9526a522c46ba089b55e1f11c163750d", + "sha256:f730d56cb924d371c26b8eaddeea3cc07d78ff51c521c6d04899ac6904b75492" + ], + "index": "pypi", + "version": "==0.961" }, "mypy-extensions": { "hashes": [ @@ -1963,11 +2007,11 @@ }, "myst-parser": { "hashes": [ - "sha256:1635ce3c18965a528d6de980f989ff64d6a1effb482e1f611b1bfb79e38f3d98", - "sha256:4c076d649e066f9f5c7c661bae2658be1ca06e76b002bb97f02a09398707686c" + "sha256:4965e51918837c13bf1c6f6fe2c6bddddf193148360fbdaefe743a4981358f6a", + "sha256:739a4d96773a8e55a2cacd3941ce46a446ee23dcd6b37e06f73f551ad7821d86" ], "index": "pypi", - "version": "==0.17.2" + "version": "==0.18.0" }, "natsort": { "hashes": [ @@ -2014,16 +2058,16 @@ }, "opencv-python-headless": { "hashes": [ - "sha256:3f330468c29882dbbec5af25695c5e575572c6b855cb0f9fe53e14116fd46bfc", - "sha256:4bdf982574bf2fefc5f82c86df7cb42e56ad627874c7c0f4d94ecf4ae8885304", - "sha256:567a54c1919bcf5b3d20a9830e3c511e57134de8def286ce137c3544a892f98c", - "sha256:62e31878641a8f96e773118d1eea9f34bdda87c9990a0faab04ebaafb5ae015c", - "sha256:a60e9ff48854ec37be391e19dd634883cc26c2f0f814e5325b3deca33420912c", - "sha256:c3c2dda44d601757a508b07d628537c49f31223ad4edd0f747a70d4c852a7b98", - "sha256:ca4f013fa958f60fb2327fe87e6127c1ac0ab536890b1d4b00847f417b7af1ba" + "sha256:21e70f8b0c04098cdf466d27184fe6c3820aaef944a22548db95099959c95889", + "sha256:2c032c373e447c3fc2a670bca20e2918a1205a6e72854df60425fd3f82c78c32", + "sha256:3bacd806cce1f1988e58f3d6f761538e0215d6621d316de94c009dc0acbd6ad3", + "sha256:d5291d7e10aa2c19cab6fd86f0d61af8617290ecd2d7ffcb051e446868d04cc5", + "sha256:e6c069bc963d7e8fcec21b3e33e594d35948badd63eccb2e80f88b0a12102c03", + "sha256:eec6281054346103d6af93f173b7c6a206beb2663d3adc04aa3ddc66e85093df", + "sha256:ffbf26fcd697af996408440a93bc69c49c05a36845771f984156dfbeaa95d497" ], "index": "pypi", - "version": "==4.5.5.64" + "version": "==4.6.0.66" }, "packaging": { "hashes": [ @@ -2329,11 +2373,11 @@ }, "requests": { "hashes": [ - "sha256:68d7c56fd5a8999887728ef304a6d12edc7be74f1cfa47714fc8b414525c9a61", - "sha256:f22fa1e554c9ddfd16e6e41ac79759e17be9e492b3587efa038054674760e72d" + "sha256:bc7861137fbce630f17b03d3ad02ad0bf978c844f3536d0edda6499dafce2b6f", + "sha256:d568723a7ebd25875d8d1eaf5dfa068cd2fc8194b2e483d7b1f7c81918dbec6b" ], "index": "pypi", - "version": "==2.27.1" + "version": "==2.28.0" }, "reverse-geocoder": { "hashes": [ diff --git a/cereal b/cereal index 96cbed052a..ff49c8e126 160000 --- a/cereal +++ b/cereal @@ -1 +1 @@ -Subproject commit 96cbed052ab1d69ea15da94dc2b882d59a786347 +Subproject commit ff49c8e126ea04889af13d690ceaf520ce7084d2 diff --git a/common/modeldata.h b/common/modeldata.h index 410a69ea65..06d9398031 100644 --- a/common/modeldata.h +++ b/common/modeldata.h @@ -24,6 +24,12 @@ constexpr auto T_IDXS_FLOAT = build_idxs(10.0); constexpr auto X_IDXS = build_idxs(192.0); constexpr auto X_IDXS_FLOAT = build_idxs(192.0); +namespace tici_dm_crop { + const int x_offset = -72; + const int y_offset = -144; + const int width = 954; +}; + const mat3 fcam_intrinsic_matrix = (mat3){{2648.0, 0.0, 1928.0 / 2, 0.0, 2648.0, 1208.0 / 2, 0.0, 0.0, 1.0}}; diff --git a/docs/CARS.md b/docs/CARS.md index e9b9e947f3..479c519dab 100644 --- a/docs/CARS.md +++ b/docs/CARS.md @@ -35,7 +35,7 @@ How We Rate The Cars **All supported cars can move between the tiers as support changes.** -# Gold - 29 cars +# Gold - 28 cars |Make|Model|Supported Package|openpilot ACC|Stop and Go|Steer to 0|Steering Torque|Actively Maintained| |---|---|---|:---:|:---:|:---:|:---:|:---:| @@ -52,10 +52,9 @@ How We Rate The Cars |Lexus|ES 2019-21|All|||||| |Lexus|ES Hybrid 2019-22|All|||||| |Lexus|NX 2020|All|||||| -|Lexus|NX Hybrid 2020|All|||||| +|Lexus|RX 2020-22|All|||||| |Lexus|UX Hybrid 2019-21|All|||||| |Toyota|Avalon 2022|All|||||| -|Toyota|Avalon Hybrid 2022|All|||||| |Toyota|Camry 2021-22|All||[4](#footnotes)|||| |Toyota|Camry Hybrid 2021-22|All|||||| |Toyota|Corolla 2020-22|All|||||| @@ -69,14 +68,13 @@ How We Rate The Cars |Toyota|RAV4 2019-21|All|||||| |Toyota|RAV4 Hybrid 2019-21|All|||||| -# Silver - 78 cars +# Silver - 75 cars |Make|Model|Supported Package|openpilot ACC|Stop and Go|Steer to 0|Steering Torque|Actively Maintained| |---|---|---|:---:|:---:|:---:|:---:|:---:| |Audi|A3 2014-19|ACC + Lane Assist|||||| |Audi|A3 Sportback e-tron 2017-18|ACC + Lane Assist|||||| |Audi|Q2 2018|ACC + Lane Assist|||||| -|Audi|Q3 2020-21|ACC + Lane Assist|||||| |Audi|RS3 2018|ACC + Lane Assist|||||| |Audi|S3 2015-17|ACC + Lane Assist|||||| |Chevrolet|Volt 2017-18[1](#footnotes)|Adaptive Cruise|||||| @@ -93,7 +91,6 @@ How We Rate The Cars |Hyundai|Santa Fe 2021-22|All|||||| |Hyundai|Santa Fe Hybrid 2022|All|||||| |Hyundai|Santa Fe Plug-in Hybrid 2022|All|||||| -|Hyundai|Sonata 2018-19|SCC + LKAS|||||| |Hyundai|Tucson Diesel 2019|SCC + LKAS|||||| |Kia|Ceed 2019|SCC + LKAS|||||| |Kia|Forte 2018|SCC + LKAS|||||| @@ -106,15 +103,16 @@ How We Rate The Cars |Kia|Sorento 2018|SCC + LKAS|||||| |Kia|Sorento 2019|SCC + LKAS|||||| |Kia|Stinger 2018|SCC + LKAS|||||| -|Lexus|ES Hybrid 2017-18|LSS|[3](#footnotes)||||| |Lexus|NX 2018-19|All|[3](#footnotes)||||| |Lexus|NX Hybrid 2018-19|All|[3](#footnotes)||||| -|Lexus|RX 2020-22|All|||||| +|Lexus|NX Hybrid 2020|All|||||| |Lexus|RX Hybrid 2020-21|All|||||| |Mazda|CX-5 2022|All|||||| |SEAT|Ateca 2018|Driver Assistance|||||| |SEAT|Leon 2014-20|Driver Assistance|||||| +|Subaru|Crosstrek 2020-21|EyeSight|||||| |Subaru|Forester 2019-21|All|||||| +|Subaru|Impreza 2020-21|EyeSight|||||| |Škoda|Kamiq 2021[5](#footnotes)|Driver Assistance|||||| |Škoda|Karoq 2019|Driver Assistance|||||| |Škoda|Kodiaq 2018-19|Driver Assistance|||||| @@ -125,18 +123,17 @@ How We Rate The Cars |Toyota|Alphard 2019-20|All|||||| |Toyota|Alphard Hybrid 2021|All|||||| |Toyota|Avalon 2019-21|TSS-P|[3](#footnotes)||||| -|Toyota|Avalon Hybrid 2019-21|TSS-P|[3](#footnotes)||||| +|Toyota|Avalon Hybrid 2022|All|||||| |Toyota|Camry 2018-20|All||[4](#footnotes)|||| |Toyota|Camry Hybrid 2018-20|All||[4](#footnotes)|||| |Toyota|Highlander 2017-19|All|[3](#footnotes)||||| |Toyota|Highlander Hybrid 2017-19|All|[3](#footnotes)||||| |Toyota|Prius 2016-20|TSS-P|[3](#footnotes)||||| |Toyota|Prius Prime 2017-20|All|[3](#footnotes)||||| -|Toyota|RAV4 2022|All|||||| |Toyota|RAV4 Hybrid 2016-18|TSS-P|[3](#footnotes)||||| |Toyota|RAV4 Hybrid 2022|All|||||| |Toyota|Sienna 2018-20|All|[3](#footnotes)||||| -|Volkswagen|Arteon 2018, 2021[7](#footnotes)|Driver Assistance|||||| +|Volkswagen|Atlas 2018-19, 2022[7](#footnotes)|Driver Assistance|||||| |Volkswagen|e-Golf 2014, 2018-20|Driver Assistance|||||| |Volkswagen|Golf 2015-20|Driver Assistance|||||| |Volkswagen|Golf Alltrack 2017-18|Driver Assistance|||||| @@ -145,57 +142,59 @@ How We Rate The Cars |Volkswagen|Golf R 2016-19|Driver Assistance|||||| |Volkswagen|Golf SportsVan 2016|Driver Assistance|||||| |Volkswagen|Golf SportWagen 2015|Driver Assistance|||||| -|Volkswagen|Passat 2015-19[6](#footnotes)|Driver Assistance|||||| |Volkswagen|Polo 2020|Driver Assistance|||||| |Volkswagen|T-Cross 2021[7](#footnotes)|Driver Assistance|||||| |Volkswagen|T-Roc 2021[7](#footnotes)|Driver Assistance|||||| |Volkswagen|Taos 2022[7](#footnotes)|Driver Assistance|||||| |Volkswagen|Touran 2017|Driver Assistance|||||| -# Bronze - 66 cars +# Bronze - 70 cars |Make|Model|Supported Package|openpilot ACC|Stop and Go|Steer to 0|Steering Torque|Actively Maintained| |---|---|---|:---:|:---:|:---:|:---:|:---:| |Acura|ILX 2016-19|AcuraWatch Plus|||||| |Acura|RDX 2016-18|AcuraWatch Plus|||||| -|Acura|RDX 2019-21|All|||||| +|Acura|RDX 2019-21|All|||||| +|Audi|Q3 2020-21|ACC + Lane Assist|||||| |Cadillac|Escalade ESV 2016[1](#footnotes)|ACC + LKAS|||||| -|Chrysler|Pacifica 2017-18|Adaptive Cruise|||||| -|Chrysler|Pacifica 2020|Adaptive Cruise|||||| +|Chrysler|Pacifica 2017-18|Adaptive Cruise|||||| +|Chrysler|Pacifica 2020|Adaptive Cruise|||||| |Chrysler|Pacifica Hybrid 2017-18|Adaptive Cruise|||||| -|Chrysler|Pacifica Hybrid 2019-21|Adaptive Cruise|||||| +|Chrysler|Pacifica Hybrid 2019-21|Adaptive Cruise|||||| |Genesis|G90 2018|All|||||| |GMC|Acadia 2018[1](#footnotes)|Adaptive Cruise|||||| -|Honda|Accord 2018-21|All|||||| -|Honda|Accord Hybrid 2018-21|All|||||| +|Honda|Accord 2018-21|All|||||| +|Honda|Accord Hybrid 2018-21|All|||||| |Honda|Civic 2016-18|Honda Sensing|||||| -|Honda|Civic 2019-20|All|||[2](#footnotes)||| -|Honda|Civic Hatchback 2017-21|Honda Sensing|||||| +|Honda|Civic 2019-20|All|||[2](#footnotes)||| +|Honda|Civic Hatchback 2017-21|Honda Sensing|||||| |Honda|CR-V 2015-16|Touring|||||| -|Honda|CR-V 2017-21|Honda Sensing|||||| +|Honda|CR-V 2017-21|Honda Sensing|||||| |Honda|CR-V Hybrid 2017-19|Honda Sensing|||||| |Honda|e 2020|All|||||| -|Honda|Fit 2018-19|Honda Sensing|||||| +|Honda|Fit 2018-19|Honda Sensing|||||| |Honda|Freed 2020|Honda Sensing|||||| |Honda|HR-V 2019-20|Honda Sensing|||||| -|Honda|Insight 2019-21|All|||||| -|Honda|Inspire 2018|All|||||| +|Honda|Insight 2019-21|All|||||| +|Honda|Inspire 2018|All|||||| |Honda|Odyssey 2018-20|Honda Sensing|||||| -|Honda|Passport 2019-21|All|||||| -|Honda|Pilot 2016-21|Honda Sensing|||||| -|Honda|Ridgeline 2017-22|Honda Sensing|||||| +|Honda|Passport 2019-21|All|||||| +|Honda|Pilot 2016-21|Honda Sensing|||||| +|Honda|Ridgeline 2017-22|Honda Sensing|||||| |Hyundai|Elantra 2017-19|SCC + LKAS|||||| |Hyundai|Genesis 2015-16|SCC + LKAS|||||| |Hyundai|Ioniq Electric 2019|SCC + LKAS|||||| |Hyundai|Ioniq Hybrid 2017-19|SCC + LKAS|||||| |Hyundai|Ioniq Plug-in Hybrid 2019|SCC + LKAS|||||| +|Hyundai|Sonata 2018-19|SCC + LKAS|||||| |Hyundai|Tucson 2021|SCC + LKAS|||||| |Hyundai|Veloster 2019-20|SCC + LKAS|||||| |Jeep|Grand Cherokee 2016-18|Adaptive Cruise|||||| -|Jeep|Grand Cherokee 2019-20|Adaptive Cruise|||||| +|Jeep|Grand Cherokee 2019-20|Adaptive Cruise|||||| |Kia|Niro Plug-in Hybrid 2019|SCC + LKAS|||||| |Kia|Optima 2017|SCC + LKAS|||||| |Lexus|CT Hybrid 2017-18|LSS|[3](#footnotes)||||| +|Lexus|ES Hybrid 2017-18|LSS|[3](#footnotes)||||| |Lexus|IS 2017-19|All|||||| |Lexus|RC 2020|All|||||| |Lexus|RX 2016-18|All|[3](#footnotes)||||| @@ -207,20 +206,21 @@ How We Rate The Cars |Nissan|X-Trail 2017|ProPILOT|||||| |Subaru|Ascent 2019-20|All|||||| |Subaru|Crosstrek 2018-19|EyeSight|||||| -|Subaru|Crosstrek 2020-21|EyeSight|||||| |Subaru|Impreza 2017-19|EyeSight|||||| -|Subaru|Impreza 2020-21|EyeSight|||||| -|Toyota|Avalon 2016-18|TSS-P|[3](#footnotes)||||| +|Toyota|Avalon 2016-18|TSS-P|[3](#footnotes)||||| +|Toyota|Avalon Hybrid 2019-21|TSS-P|[3](#footnotes)||||| |Toyota|C-HR 2017-21|All|||||| -|Toyota|C-HR Hybrid 2017-19|All|||||| +|Toyota|C-HR Hybrid 2017-19|All|||||| |Toyota|Corolla 2017-19|All|[3](#footnotes)||||| |Toyota|Prius v 2017|TSS-P|[3](#footnotes)||||| |Toyota|RAV4 2016-18|TSS-P|[3](#footnotes)||||| -|Volkswagen|Atlas 2018-19, 2022[7](#footnotes)|Driver Assistance|||||| +|Toyota|RAV4 2022|All|||||| +|Volkswagen|Arteon 2018, 2021[7](#footnotes)|Driver Assistance|||||| |Volkswagen|California 2021[7](#footnotes)|Driver Assistance|||||| |Volkswagen|Caravelle 2020[7](#footnotes)|Driver Assistance|||||| |Volkswagen|Jetta 2018-21|Driver Assistance|||||| |Volkswagen|Jetta GLI 2021|Driver Assistance|||||| +|Volkswagen|Passat 2015-19[6](#footnotes)|Driver Assistance|||||| |Volkswagen|Tiguan 2019-22[7](#footnotes)|Driver Assistance|||||| diff --git a/release/files_common b/release/files_common index ceb0110606..5230511ddd 100644 --- a/release/files_common +++ b/release/files_common @@ -104,6 +104,7 @@ selfdrive/car/fw_versions.py selfdrive/car/isotp_parallel_query.py selfdrive/car/tests/__init__.py selfdrive/car/tests/test_car_interfaces.py +selfdrive/car/torque_data.json selfdrive/car/body/*.py selfdrive/car/chrysler/*.py diff --git a/selfdrive/camerad/cameras/camera_common.cc b/selfdrive/camerad/cameras/camera_common.cc index 21e225d538..049324f085 100644 --- a/selfdrive/camerad/cameras/camera_common.cc +++ b/selfdrive/camerad/cameras/camera_common.cc @@ -239,7 +239,7 @@ static kj::Array yuv420_to_jpeg(const CameraBuf *b, int thumbnail_w int in_stride = b->cur_yuv_buf->stride; // make the buffer big enough. jpeg_write_raw_data requires 16-pixels aligned height to be used. - std::unique_ptr buf(new uint8_t[(thumbnail_width * ((thumbnail_height + 15) & ~15) * 3) / 2]); + std::unique_ptr buf(new uint8_t[(thumbnail_width * ((thumbnail_height + 15) & ~15) * 3) / 2]); uint8_t *y_plane = buf.get(); uint8_t *u_plane = y_plane + thumbnail_width * thumbnail_height; uint8_t *v_plane = u_plane + (thumbnail_width * thumbnail_height) / 4; diff --git a/selfdrive/camerad/cameras/camera_qcom2.cc b/selfdrive/camerad/cameras/camera_qcom2.cc index b949dfb80f..d43beb0921 100644 --- a/selfdrive/camerad/cameras/camera_qcom2.cc +++ b/selfdrive/camerad/cameras/camera_qcom2.cc @@ -837,7 +837,7 @@ void cameras_init(VisionIpcServer *v, MultiCameraState *s, cl_device_id device_i s->road_cam.camera_init(s, v, CAMERA_ID_AR0231, 1, 20, device_id, ctx, VISION_STREAM_RGB_ROAD, VISION_STREAM_ROAD, !env_disable_road); s->wide_road_cam.camera_init(s, v, CAMERA_ID_AR0231, 0, 20, device_id, ctx, VISION_STREAM_RGB_WIDE_ROAD, VISION_STREAM_WIDE_ROAD, !env_disable_wide_road); - s->sm = new SubMaster({"driverStateV2"}); + s->sm = new SubMaster({"driverState"}); s->pm = new PubMaster({"roadCameraState", "driverCameraState", "wideRoadCameraState", "thumbnail"}); } diff --git a/selfdrive/car/chrysler/interface.py b/selfdrive/car/chrysler/interface.py index e47b085533..55672dd4ab 100755 --- a/selfdrive/car/chrysler/interface.py +++ b/selfdrive/car/chrysler/interface.py @@ -23,14 +23,6 @@ class CarInterface(CarInterfaceBase): ret.steerRateCost = 0.7 ret.steerLimitTimer = 0.4 - # set max lateral acceleration - if candidate in (CAR.PACIFICA_2018, CAR.PACIFICA_2019_HYBRID, CAR.JEEP_CHEROKEE, CAR.JEEP_CHEROKEE_2019): - ret.maxLateralAccel = 1.6 - if candidate in (CAR.PACIFICA_2018_HYBRID,): - ret.maxLateralAccel = 1.4 - if candidate in (CAR.PACIFICA_2017_HYBRID,): - ret.maxLateralAccel = 1.2 - if candidate in (CAR.JEEP_CHEROKEE, CAR.JEEP_CHEROKEE_2019): ret.wheelbase = 2.91 # in meters ret.steerRatio = 12.7 diff --git a/selfdrive/car/docs_definitions.py b/selfdrive/car/docs_definitions.py index 31b1926f67..f09dad7860 100644 --- a/selfdrive/car/docs_definitions.py +++ b/selfdrive/car/docs_definitions.py @@ -7,7 +7,7 @@ from enum import Enum from typing import Dict, List, Optional, Union, no_type_check TACO_TORQUE_THRESHOLD = 2.5 # m/s^2 -GREAT_TORQUE_THRESHOLD = 1.5 # m/s^2 +GREAT_TORQUE_THRESHOLD = 1.4 # m/s^2 GOOD_TORQUE_THRESHOLD = 1.0 # m/s^2 diff --git a/selfdrive/car/gm/interface.py b/selfdrive/car/gm/interface.py index bc43086586..498f4b3347 100755 --- a/selfdrive/car/gm/interface.py +++ b/selfdrive/car/gm/interface.py @@ -83,7 +83,6 @@ class CarInterface(CarInterfaceBase): ret.steerRatio = 17.7 # Stock 15.7, LiveParameters tire_stiffness_factor = 0.469 # Stock Michelin Energy Saver A/S, LiveParameters ret.centerToFront = ret.wheelbase * 0.45 # Volt Gen 1, TODO corner weigh - ret.maxLateralAccel = 1.6 ret.lateralTuning.pid.kpBP = [0., 40.] ret.lateralTuning.pid.kpV = [0., 0.17] @@ -111,7 +110,6 @@ class CarInterface(CarInterfaceBase): ret.wheelbase = 2.86 ret.steerRatio = 14.4 # end to end is 13.46 ret.centerToFront = ret.wheelbase * 0.4 - ret.maxLateralAccel = 1.4 ret.lateralTuning.pid.kf = 1. # get_steer_feedforward_acadia() elif candidate == CAR.BUICK_REGAL: diff --git a/selfdrive/car/honda/interface.py b/selfdrive/car/honda/interface.py index de5db98ea6..ea7deab5d7 100755 --- a/selfdrive/car/honda/interface.py +++ b/selfdrive/car/honda/interface.py @@ -100,7 +100,6 @@ class CarInterface(CarInterfaceBase): ret.lateralParams.torqueBP, ret.lateralParams.torqueV = [[0, 2560, 8000], [0, 2560, 3840]] ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.3], [0.1]] else: - ret.maxLateralAccel = 0.4 ret.lateralParams.torqueBP, ret.lateralParams.torqueV = [[0, 2560], [0, 2560]] ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[1.1], [0.33]] tire_stiffness_factor = 1. @@ -113,7 +112,6 @@ class CarInterface(CarInterfaceBase): ret.steerRatio = 15.38 # 10.93 is end-to-end spec ret.lateralParams.torqueBP, ret.lateralParams.torqueV = [[0, 4096], [0, 4096]] # TODO: determine if there is a dead zone at the top end tire_stiffness_factor = 1. - ret.maxLateralAccel = 1.6 ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.8], [0.24]] elif candidate in (CAR.ACCORD, CAR.ACCORDH): @@ -128,7 +126,6 @@ class CarInterface(CarInterfaceBase): if eps_modified: ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.3], [0.09]] else: - ret.maxLateralAccel = 1.6 ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.6], [0.18]] elif candidate == CAR.ACURA_ILX: @@ -165,7 +162,6 @@ class CarInterface(CarInterfaceBase): ret.lateralParams.torqueBP, ret.lateralParams.torqueV = [[0, 2560, 10000], [0, 2560, 3840]] ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.21], [0.07]] else: - ret.maxLateralAccel = 1.7 ret.lateralParams.torqueBP, ret.lateralParams.torqueV = [[0, 3840], [0, 3840]] ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.64], [0.192]] tire_stiffness_factor = 0.677 @@ -190,7 +186,6 @@ class CarInterface(CarInterfaceBase): ret.steerRatio = 13.06 ret.lateralParams.torqueBP, ret.lateralParams.torqueV = [[0, 4096], [0, 4096]] # TODO: determine if there is a dead zone at the top end tire_stiffness_factor = 0.75 - ret.maxLateralAccel = 1.7 ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.2], [0.05]] elif candidate == CAR.FREED: @@ -222,7 +217,6 @@ class CarInterface(CarInterfaceBase): ret.centerToFront = ret.wheelbase * 0.38 ret.steerRatio = 15.0 # as spec tire_stiffness_factor = 0.444 - ret.maxLateralAccel = 0.9 ret.lateralParams.torqueBP, ret.lateralParams.torqueV = [[0, 1000], [0, 1000]] # TODO: determine if there is a dead zone at the top end ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.8], [0.24]] @@ -232,7 +226,6 @@ class CarInterface(CarInterfaceBase): ret.wheelbase = 2.75 ret.centerToFront = ret.wheelbase * 0.41 ret.steerRatio = 11.95 # as spec - ret.maxLateralAccel = 1.2 ret.lateralParams.torqueBP, ret.lateralParams.torqueV = [[0, 3840], [0, 3840]] ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.2], [0.06]] tire_stiffness_factor = 0.677 @@ -245,7 +238,6 @@ class CarInterface(CarInterfaceBase): ret.steerRatio = 14.35 # as spec ret.lateralParams.torqueBP, ret.lateralParams.torqueV = [[0, 4096], [0, 4096]] # TODO: determine if there is a dead zone at the top end tire_stiffness_factor = 0.82 - ret.maxLateralAccel = 0.8 ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.28], [0.08]] elif candidate == CAR.ODYSSEY_CHN: @@ -266,7 +258,6 @@ class CarInterface(CarInterfaceBase): ret.steerRatio = 17.25 # as spec ret.lateralParams.torqueBP, ret.lateralParams.torqueV = [[0, 4096], [0, 4096]] # TODO: determine if there is a dead zone at the top end tire_stiffness_factor = 0.444 - ret.maxLateralAccel = 1.5 ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.38], [0.11]] elif candidate == CAR.RIDGELINE: @@ -277,7 +268,6 @@ class CarInterface(CarInterfaceBase): ret.steerRatio = 15.59 # as spec ret.lateralParams.torqueBP, ret.lateralParams.torqueV = [[0, 4096], [0, 4096]] # TODO: determine if there is a dead zone at the top end tire_stiffness_factor = 0.444 - ret.maxLateralAccel = 1.3 ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.38], [0.11]] elif candidate == CAR.INSIGHT: @@ -288,7 +278,6 @@ class CarInterface(CarInterfaceBase): ret.steerRatio = 15.0 # 12.58 is spec end-to-end ret.lateralParams.torqueBP, ret.lateralParams.torqueV = [[0, 4096], [0, 4096]] # TODO: determine if there is a dead zone at the top end tire_stiffness_factor = 0.82 - ret.maxLateralAccel = 1.4 ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.6], [0.18]] elif candidate == CAR.HONDA_E: diff --git a/selfdrive/car/hyundai/interface.py b/selfdrive/car/hyundai/interface.py index 831b318d55..08af654996 100644 --- a/selfdrive/car/hyundai/interface.py +++ b/selfdrive/car/hyundai/interface.py @@ -63,7 +63,6 @@ class CarInterface(CarInterfaceBase): # Values from optimizer ret.steerRatio = 16.55 # 13.8 is spec end-to-end tire_stiffness_factor = 0.82 - ret.maxLateralAccel = 3.2 ret.lateralTuning.pid.kiBP, ret.lateralTuning.pid.kpBP = [[9., 22.], [9., 22.]] ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.2, 0.35], [0.05, 0.09]] elif candidate in (CAR.SONATA, CAR.SONATA_HYBRID): @@ -72,7 +71,6 @@ class CarInterface(CarInterfaceBase): ret.wheelbase = 2.84 ret.steerRatio = 13.27 * 1.15 # 15% higher at the center seems reasonable tire_stiffness_factor = 0.65 - ret.maxLateralAccel = 2.5 ret.lateralTuning.pid.kiBP, ret.lateralTuning.pid.kpBP = [[0.], [0.]] ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.25], [0.05]] elif candidate == CAR.SONATA_LF: @@ -80,7 +78,6 @@ class CarInterface(CarInterfaceBase): ret.mass = 4497. * CV.LB_TO_KG ret.wheelbase = 2.804 ret.steerRatio = 13.27 * 1.15 # 15% higher at the center seems reasonable - ret.maxLateralAccel = 1.8 ret.lateralTuning.pid.kiBP, ret.lateralTuning.pid.kpBP = [[0.], [0.]] ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.25], [0.05]] elif candidate == CAR.PALISADE: @@ -89,7 +86,6 @@ class CarInterface(CarInterfaceBase): ret.wheelbase = 2.90 ret.steerRatio = 15.6 * 1.15 tire_stiffness_factor = 0.63 - ret.maxLateralAccel = 2.5 ret.lateralTuning.pid.kiBP, ret.lateralTuning.pid.kpBP = [[0.], [0.]] ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.3], [0.05]] elif candidate in (CAR.ELANTRA, CAR.ELANTRA_GT_I30): @@ -146,7 +142,6 @@ class CarInterface(CarInterfaceBase): ret.wheelbase = 2.7 ret.steerRatio = 13.73 # Spec tire_stiffness_factor = 0.385 - ret.maxLateralAccel = 3.0 ret.lateralTuning.pid.kiBP, ret.lateralTuning.pid.kpBP = [[0.], [0.]] ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.25], [0.05]] if candidate not in (CAR.IONIQ_EV_2020, CAR.IONIQ_PHEV, CAR.IONIQ_HEV_2022): @@ -196,7 +191,6 @@ class CarInterface(CarInterfaceBase): ret.wheelbase = 2.7 ret.steerRatio = 13.9 if CAR.KIA_NIRO_HEV_2021 else 13.73 # Spec tire_stiffness_factor = 0.385 - ret.maxLateralAccel = 2.9 ret.lateralTuning.pid.kiBP, ret.lateralTuning.pid.kpBP = [[0.], [0.]] ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.25], [0.05]] if candidate == CAR.KIA_NIRO_HEV: @@ -228,7 +222,6 @@ class CarInterface(CarInterfaceBase): ret.mass = 1825. + STD_CARGO_KG ret.wheelbase = 2.78 ret.steerRatio = 14.4 * 1.15 # 15% higher at the center seems reasonable - ret.maxLateralAccel = 2.4 ret.lateralTuning.pid.kiBP, ret.lateralTuning.pid.kpBP = [[0.], [0.]] ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.25], [0.05]] elif candidate == CAR.KIA_FORTE: @@ -254,7 +247,6 @@ class CarInterface(CarInterfaceBase): ret.wheelbase = 2.85 ret.steerRatio = 13.27 # 2021 Kia K5 Steering Ratio (all trims) tire_stiffness_factor = 0.5 - ret.maxLateralAccel = 2.1 ret.lateralTuning.pid.kiBP, ret.lateralTuning.pid.kpBP = [[0.], [0.]] ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.25], [0.05]] elif candidate == CAR.KIA_EV6: diff --git a/selfdrive/car/hyundai/values.py b/selfdrive/car/hyundai/values.py index 7d3ab93cde..4ca81fdb40 100644 --- a/selfdrive/car/hyundai/values.py +++ b/selfdrive/car/hyundai/values.py @@ -501,6 +501,7 @@ FW_VERSIONS = { ], (Ecu.fwdCamera, 0x7c4, None): [ b'\xf1\x00LFF LKAS AT USA LHD 1.00 1.01 95740-C1000 E51', + b'\xf1\x00LFF LKAS AT USA LHD 1.01 1.02 95740-C1000 E52', ], (Ecu.transmission, 0x7e1, None): [ b'\xf1\x006T6H0_C2\x00\x006T6B4051\x00\x00TLF0G24NL1\xb0\x9f\xee\xf5', @@ -509,6 +510,7 @@ FW_VERSIONS = { b'\xf1\x87\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xf1\x816T6B4051\x00\x00\xf1\x006T6H0_C2\x00\x006T6B4051\x00\x00TLF0G24SL2n\x8d\xbe\xd8', b'\xf1\x87LAHSGN012918KF10\x98\x88x\x87\x88\x88x\x87\x88\x88\x98\x88\x87w\x88w\x88\x88\x98\x886o\xf6\xff\x98w\x7f\xff3\x00\xf1\x816W3B1051\x00\x00\xf1\x006W351_C2\x00\x006W3B1051\x00\x00TLF0T20NL2\x00\x00\x00\x00', b'\xf1\x87LAHSGN012918KF10\x98\x88x\x87\x88\x88x\x87\x88\x88\x98\x88\x87w\x88w\x88\x88\x98\x886o\xf6\xff\x98w\x7f\xff3\x00\xf1\x816W3B1051\x00\x00\xf1\x006W351_C2\x00\x006W3B1051\x00\x00TLF0T20NL2H\r\xbdm', + b'\xf1\x87LAJSG49645724HF0\x87x\x87\x88\x87www\x88\x99\xa8\x89\x88\x99\xa8\x89\x88\x99\xa8\x89S_\xfb\xff\x87f\x7f\xff^2\xf1\x816W3B1051\x00\x00\xf1\x006W351_C2\x00\x006W3B1051\x00\x00TLF0T20NL2H\r\xbdm', ], }, CAR.TUCSON: { diff --git a/selfdrive/car/interfaces.py b/selfdrive/car/interfaces.py index a2c11bf023..9220aee522 100644 --- a/selfdrive/car/interfaces.py +++ b/selfdrive/car/interfaces.py @@ -1,3 +1,4 @@ +import json import os import time from abc import abstractmethod, ABC @@ -19,6 +20,7 @@ EventName = car.CarEvent.EventName MAX_CTRL_SPEED = (V_CRUISE_MAX + 4) * CV.KPH_TO_MS ACCEL_MAX = 2.0 ACCEL_MIN = -3.5 +TORQUE_PARAMS_PATH = os.path.join(BASEDIR, 'selfdrive/car/torque_data.json') # generic car and radar interfaces @@ -81,7 +83,7 @@ class CarInterfaceBase(ABC): ret.steerControlType = car.CarParams.SteerControlType.torque ret.minSteerSpeed = 0. ret.wheelSpeedFactor = 1.0 - ret.maxLateralAccel = float('nan') + ret.maxLateralAccel = CarInterfaceBase.get_torque_params(candidate)['MAX_LAT_ACCEL_MEASURED'] ret.pcmCruise = True # openpilot's state is tied to the PCM's cruise state on most cars ret.minEnableSpeed = -1. # enable is done by stock ACC, so ignore this @@ -105,6 +107,12 @@ class CarInterfaceBase(ABC): ret.steerLimitTimer = 1.0 return ret + @staticmethod + def get_torque_params(candidate, default=float('NaN')): + with open(TORQUE_PARAMS_PATH) as f: + data = json.load(f) + return {key: data[key].get(candidate, default) for key in data} + @abstractmethod def _update(self, c: car.CarControl) -> car.CarState: pass diff --git a/selfdrive/car/subaru/interface.py b/selfdrive/car/subaru/interface.py index edd26a4449..d0d8e91ce1 100644 --- a/selfdrive/car/subaru/interface.py +++ b/selfdrive/car/subaru/interface.py @@ -51,7 +51,6 @@ class CarInterface(CarInterfaceBase): ret.centerToFront = ret.wheelbase * 0.5 ret.steerRatio = 17 # learned, 14 stock ret.steerActuatorDelay = 0.1 - ret.maxLateralAccel = 1.3 ret.lateralTuning.pid.kf = 0.00005 ret.lateralTuning.pid.kiBP, ret.lateralTuning.pid.kpBP = [[0., 14., 23.], [0., 14., 23.]] ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.045, 0.042, 0.20], [0.04, 0.035, 0.045]] @@ -62,7 +61,6 @@ class CarInterface(CarInterfaceBase): ret.centerToFront = ret.wheelbase * 0.5 ret.steerRatio = 17 # learned, 14 stock ret.steerActuatorDelay = 0.1 - ret.maxLateralAccel = 3.2 ret.lateralTuning.pid.kf = 0.000038 ret.lateralTuning.pid.kiBP, ret.lateralTuning.pid.kpBP = [[0., 14., 23.], [0., 14., 23.]] ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.01, 0.065, 0.2], [0.001, 0.015, 0.025]] diff --git a/selfdrive/car/tests/test_car_interfaces.py b/selfdrive/car/tests/test_car_interfaces.py index 92024ab0c2..52c89440c7 100755 --- a/selfdrive/car/tests/test_car_interfaces.py +++ b/selfdrive/car/tests/test_car_interfaces.py @@ -1,4 +1,5 @@ #!/usr/bin/env python3 +import math import unittest import importlib from parameterized import parameterized @@ -39,7 +40,9 @@ class TestCarInterfaces(unittest.TestCase): if tuning == 'pid': self.assertTrue(len(car_params.lateralTuning.pid.kpV)) elif tuning == 'torque': - self.assertTrue(car_params.lateralTuning.torque.kf > 0) + kf = car_params.lateralTuning.torque.kf + self.assertTrue(not math.isnan(kf) and kf > 0) + self.assertTrue(not math.isnan(car_params.lateralTuning.torque.friction)) elif tuning == 'indi': self.assertTrue(len(car_params.lateralTuning.indi.outerLoopGainV)) diff --git a/selfdrive/car/tests/test_docs.py b/selfdrive/car/tests/test_docs.py index fed6989d40..b4bc14ef00 100755 --- a/selfdrive/car/tests/test_docs.py +++ b/selfdrive/car/tests/test_docs.py @@ -3,6 +3,7 @@ import unittest from selfdrive.car.car_helpers import interfaces, get_interface_attr from selfdrive.car.docs import CARS_MD_OUT, CARS_MD_TEMPLATE, generate_cars_md, get_all_car_info +from selfdrive.car.docs_definitions import Column, Star class TestCarDocs(unittest.TestCase): @@ -37,6 +38,11 @@ class TestCarDocs(unittest.TestCase): if "rav4" in tokens: self.assertIn("RAV4", car.model, "Use correct capitalization") + def test_torque_star(self): + for car in self.all_cars: + if car.car_name == "honda": + self.assertTrue(car.row[Column.STEERING_TORQUE] in (Star.EMPTY, Star.HALF), f"{car.name} has full torque star") + if __name__ == "__main__": unittest.main() diff --git a/selfdrive/car/torque_data.json b/selfdrive/car/torque_data.json new file mode 100644 index 0000000000..63ee0e9bcd --- /dev/null +++ b/selfdrive/car/torque_data.json @@ -0,0 +1 @@ +{"LAT_ACCEL_FACTOR": {"HONDA PILOT 2017": 1.682289482065265, "HONDA CIVIC 2016": 1.5248128495527884, "TOYOTA CAMRY 2018": 2.1115709806216447, "TOYOTA COROLLA HYBRID TSS2 2019": 2.3250600977240077, "TOYOTA RAV4 2019": 2.625504029066767, "HYUNDAI PALISADE 2020": 2.5250855675875634, "TOYOTA SIENNA 2018": 1.8254254785341577, "ACURA RDX 2020": 1.3998101622214894, "TOYOTA RAV4 2017": 1.948190869577896, "HONDA RIDGELINE 2017": 1.4158181862793415, "TOYOTA PRIUS 2017": 1.9142926195557595, "TOYOTA HIGHLANDER HYBRID 2020": 2.1097056247344392, "HYUNDAI SONATA 2020": 3.2488989629905944, "KIA STINGER GT2 2018": 2.7592622336517834, "TOYOTA HIGHLANDER 2020": 2.0408544157877055, "HONDA ACCORD 2018": 1.6374118241564064, "TOYOTA PRIUS TSS2 2021": 2.3207270770298365, "NISSAN LEAF 2018": NaN, "CHRYSLER PACIFICA HYBRID 2019": 1.46050785084946, "LEXUS NX 2020": 2.29533657249232, "TOYOTA RAV4 HYBRID 2019": 2.4003012079562085, "HONDA CIVIC (BOSCH) 2019": 1.6523031416671652, "KIA NIRO HYBRID 2021": 2.743464625803003, "HONDA ACCORD HYBRID 2018": 1.5904016830979033, "LEXUS NX HYBRID 2018": 2.398678119681945, "TOYOTA COROLLA TSS2 2019": 2.3859244449846466, "VOLKSWAGEN ARTEON 1ST GEN": 1.4249208219414902, "TOYOTA CAMRY HYBRID 2021": 2.5434553806317055, "VOLKSWAGEN JETTA 7TH GEN": 1.2228130240634283, "HONDA INSIGHT 2019": 1.468352089969897, "SUBARU FORESTER 2019": 3.6185035528523546, "HYUNDAI ELANTRA 2021": 3.5294999663335185, "HYUNDAI IONIQ ELECTRIC LIMITED 2019": 2.2179616966432905, "HYUNDAI KONA HYBRID 2020": 4.493208192966529, "HONDA ODYSSEY 2018": 1.8838175399087222, "LEXUS RX 2016": 1.3912132245094184, "TOYOTA COROLLA 2017": 3.0143547548384735, "LEXUS ES 2019": 2.012201253045193, "HYUNDAI SANTA FE 2019": 3.039728566484244, "TOYOTA AVALON 2022": 2.4619858654670885, "JEEP GRAND CHEROKEE V6 2018": 1.8411674990629987, "CHEVROLET VOLT PREMIER 2017": 1.5943438675127841, "TOYOTA RAV4 HYBRID 2017": 1.9803053616868995, "LEXUS RX 2020": 1.664616846377383, "TOYOTA HIGHLANDER HYBRID 2018": 1.8866764457400844, "TOYOTA CAMRY HYBRID 2018": 2.014213351947917, "TESLA AP2 MODEL S": NaN, "VOLKSWAGEN GOLF 7TH GEN": 1.4428896585442685, "TOYOTA MIRAI 2021": 2.7217623852898853, "LEXUS IS 2018": 3.5624668608596837, "TOYOTA HIGHLANDER 2017": 1.9199133105823853, "HYUNDAI SONATA HYBRID 2021": 2.7313907441569554, "VOLKSWAGEN ATLAS 1ST GEN": 1.4483948408160645, "LEXUS ES HYBRID 2019": 2.4138026617523547, "HYUNDAI GENESIS 2015-2016": 1.7636839808044658, "JEEP GRAND CHEROKEE 2019": 1.787264083939164, "SUBARU ASCENT LIMITED 2019": 3.0494069339774565, "HONDA CR-V 2017": 1.9828470679233807, "HONDA FIT 2018": 1.594940026552055, "TOYOTA CAMRY 2021": 2.5057990840460342, "AUDI Q3 2ND GEN": 1.4558300885316715, "AUDI A3 3RD GEN": 1.5304173783542625, "LEXUS RX HYBRID 2017": 1.577216425446677, "HONDA CIVIC 2022": 2.69252285552613, "GENESIS G70 2018": 3.866842361627636, "CHRYSLER PACIFICA HYBRID 2018": 1.5771851419640903, "VOLKSWAGEN PASSAT 8TH GEN": 1.2985597059739313, "HONDA CR-V 2016": 0.7745984062630755, "HYUNDAI IONIQ PHEV 2020": 2.5696218908589383, "GMC ACADIA DENALI 2018": 1.3310088601868082, "HYUNDAI SONATA 2019": 1.9736552675022665, "TOYOTA AVALON 2019": 1.7245149905226294, "TOYOTA C-HR 2018": 1.5895016960662856, "HONDA CR-V HYBRID 2019": 2.0687746810729193, "CHRYSLER PACIFICA 2020": 1.40536880000744, "HYUNDAI IONIQ ELECTRIC 2020": 3.3220838625838667, "VOLKSWAGEN TIGUAN 2ND GEN": NaN, "LEXUS NX 2018": 1.7753192756242595, "KIA OPTIMA SX 2019 & 2016": 3.12625562280304, "TOYOTA AVALON HYBRID 2019": 1.7681286449373381, "TOYOTA RAV4 HYBRID 2022": 2.5518187542231816, "HONDA PASSPORT 2021": 1.5174924139130355, "KIA K5 2021": 2.482916204106975, "ACURA ILX 2016": 1.5237423964720282, "HYUNDAI IONIQ HYBRID 2017-2019": 2.3723887901632645, "KIA NIRO EV 2020": 2.924651969180446, "SUBARU IMPREZA SPORT 2020": 2.5317689549587694, "CHRYSLER PACIFICA HYBRID 2017": 1.167126725149114, "HYUNDAI KONA ELECTRIC 2019": 4.201092987427836, "HYUNDAI ELANTRA HYBRID 2021": 3.7153193626001926, "HYUNDAI SANTA FE HYBRID 2022": 3.3049230586030545, "CHRYSLER PACIFICA 2018": 1.524867383058782, "NISSAN ROGUE 2019": NaN, "KIA SORENTO GT LINE 2018": 2.5970979517766213, "COMMA BODY": NaN, "NISSAN LEAF 2018 Instrument Cluster": NaN, "LEXUS RX HYBRID 2020": 1.5460982690267173, "MAZDA CX-9 2021": 1.9514800984278198, "HYUNDAI SANTA FE 2022": 3.5354982200434524, "HYUNDAI SANTA FE PlUG-IN HYBRID 2022": 1.8902492836532216, "HONDA HRV 2019": 2.1262957371020352, "TOYOTA AVALON HYBRID 2022": 2.4142150048378683, "SUBARU IMPREZA LIMITED 2019": 1.2203463907025918, "GENESIS G80 2017": 2.4086794443413906, "VOLKSWAGEN TAOS 1ST GEN": 2.0031666974545947, "KIA FORTE E 2018 & GT 2021": 2.022553820222557, "CADILLAC ESCALADE ESV 2016": 1.5522339636408988, "TOYOTA C-HR 2021": 1.6519334844316687, "TOYOTA C-HR HYBRID 2018": 1.3193315010905482}, "MAX_LAT_ACCEL_MEASURED": {"HONDA PILOT 2017": 0.9069354290994807, "HONDA CIVIC 2016": 0.4030275472529351, "TOYOTA CAMRY 2018": 1.686123168195758, "TOYOTA COROLLA HYBRID TSS2 2019": 1.9139332621491167, "TOYOTA RAV4 2019": 2.234047196286479, "HYUNDAI PALISADE 2020": 1.8303582523301922, "TOYOTA SIENNA 2018": 1.4752503435300715, "ACURA RDX 2020": 0.40911581320000334, "TOYOTA RAV4 2017": 1.6622227720995595, "HONDA RIDGELINE 2017": 0.8224685813281227, "TOYOTA PRIUS 2017": 1.4548827870876067, "TOYOTA HIGHLANDER HYBRID 2020": 2.0649784271823037, "HYUNDAI SONATA 2020": 2.243989856570093, "KIA STINGER GT2 2018": 1.9531287107084392, "TOYOTA HIGHLANDER 2020": 1.659381392090836, "HONDA ACCORD 2018": 0.40486739531686267, "TOYOTA PRIUS TSS2 2021": 1.861541601048098, "NISSAN LEAF 2018": NaN, "CHRYSLER PACIFICA HYBRID 2019": 1.1930739374812243, "LEXUS NX 2020": 1.565268724838564, "TOYOTA RAV4 HYBRID 2019": 2.0915384047218426, "HONDA CIVIC (BOSCH) 2019": 0.4062886118517984, "KIA NIRO HYBRID 2021": NaN, "HONDA ACCORD HYBRID 2018": 0.35128914564548286, "LEXUS NX HYBRID 2018": 1.81821359787186, "TOYOTA COROLLA TSS2 2019": 1.911280958056631, "VOLKSWAGEN ARTEON 1ST GEN": 1.2587939472578302, "TOYOTA CAMRY HYBRID 2021": 2.312510643730013, "VOLKSWAGEN JETTA 7TH GEN": 1.232161945396623, "HONDA INSIGHT 2019": 0.5174836462945298, "SUBARU FORESTER 2019": 2.29255993930968, "HYUNDAI ELANTRA 2021": NaN, "HYUNDAI IONIQ ELECTRIC LIMITED 2019": 2.133978602602408, "HYUNDAI KONA HYBRID 2020": NaN, "HONDA ODYSSEY 2018": 0.8254773781363679, "LEXUS RX 2016": 1.0954776820595344, "TOYOTA COROLLA 2017": 2.2012870528168964, "LEXUS ES 2019": 2.069508805495439, "HYUNDAI SANTA FE 2019": 2.3763720477660253, "TOYOTA AVALON 2022": 2.531962323786023, "JEEP GRAND CHEROKEE V6 2018": 1.4193323242487865, "CHEVROLET VOLT PREMIER 2017": 1.8576430337666092, "TOYOTA RAV4 HYBRID 2017": 1.7425797219020926, "LEXUS RX 2020": 1.5118835180227874, "TOYOTA HIGHLANDER HYBRID 2018": 1.6872527654528833, "TOYOTA CAMRY HYBRID 2018": 1.6793468378089895, "TESLA AP2 MODEL S": NaN, "VOLKSWAGEN GOLF 7TH GEN": 1.5614447712441282, "TOYOTA MIRAI 2021": 2.271146483563897, "LEXUS IS 2018": NaN, "TOYOTA HIGHLANDER 2017": 1.6573774863189379, "HYUNDAI SONATA HYBRID 2021": 1.9464120717803253, "VOLKSWAGEN ATLAS 1ST GEN": 1.6867005451451638, "LEXUS ES HYBRID 2019": 1.956450687999482, "HYUNDAI GENESIS 2015-2016": 1.5359761378898085, "JEEP GRAND CHEROKEE 2019": 1.2418961305308847, "SUBARU ASCENT LIMITED 2019": NaN, "HONDA CR-V 2017": 0.2642062271814174, "HONDA FIT 2018": 0.5896345937094754, "TOYOTA CAMRY 2021": 2.1783533980215166, "AUDI Q3 2ND GEN": 1.1582239457022647, "AUDI A3 3RD GEN": 1.598699116126939, "LEXUS RX HYBRID 2017": 1.319771127672888, "HONDA CIVIC 2022": 1.1806949852580793, "GENESIS G70 2018": 2.2496820850331134, "CHRYSLER PACIFICA HYBRID 2018": 1.294798200968084, "VOLKSWAGEN PASSAT 8TH GEN": 1.247540921731637, "HONDA CR-V 2016": 0.6991119250342539, "HYUNDAI IONIQ PHEV 2020": 1.9062392690595655, "GMC ACADIA DENALI 2018": 1.2986994230652662, "HYUNDAI SONATA 2019": 1.257445187146704, "TOYOTA AVALON 2019": 1.664577368475227, "TOYOTA C-HR 2018": 1.308490445144888, "HONDA CR-V HYBRID 2019": 0.4693072746041504, "CHRYSLER PACIFICA 2020": 1.1712413003138664, "HYUNDAI IONIQ ELECTRIC 2020": NaN, "VOLKSWAGEN TIGUAN 2ND GEN": 1.1573057001955744, "LEXUS NX 2018": 1.9457312007432144, "KIA OPTIMA SX 2019 & 2016": 2.0928228595938845, "TOYOTA AVALON HYBRID 2019": NaN, "TOYOTA RAV4 HYBRID 2022": 1.7647290773049569, "HONDA PASSPORT 2021": 0.8248357750132685, "KIA K5 2021": 1.4628018983720577, "ACURA ILX 2016": 0.6330753921140401, "HYUNDAI IONIQ HYBRID 2017-2019": NaN, "KIA NIRO EV 2020": 2.020186575503497, "SUBARU IMPREZA SPORT 2020": 2.136786720514988, "CHRYSLER PACIFICA HYBRID 2017": 1.0642918033307907, "HYUNDAI KONA ELECTRIC 2019": NaN, "HYUNDAI ELANTRA HYBRID 2021": NaN, "HYUNDAI SANTA FE HYBRID 2022": NaN, "CHRYSLER PACIFICA 2018": 1.3654603720349934, "NISSAN ROGUE 2019": NaN, "KIA SORENTO GT LINE 2018": NaN, "COMMA BODY": NaN, "NISSAN LEAF 2018 Instrument Cluster": NaN, "LEXUS RX HYBRID 2020": 1.255230465866663, "MAZDA CX-9 2021": NaN, "HYUNDAI SANTA FE 2022": 3.3823387508235827, "HYUNDAI SANTA FE PlUG-IN HYBRID 2022": 1.544104124172169, "HONDA HRV 2019": 0.7492792210307291, "TOYOTA AVALON HYBRID 2022": NaN, "SUBARU IMPREZA LIMITED 2019": 0.8127509604734238, "GENESIS G80 2017": NaN, "VOLKSWAGEN TAOS 1ST GEN": 1.6590543949912684, "KIA FORTE E 2018 & GT 2021": 2.3970573789339786, "CADILLAC ESCALADE ESV 2016": NaN, "TOYOTA C-HR 2021": 1.3559230155096402, "TOYOTA C-HR HYBRID 2018": 0.8910235787356033}, "FRICTION": {"HONDA PILOT 2017": 0.2168217463499328, "HONDA CIVIC 2016": 0.28406761310944795, "TOYOTA CAMRY 2018": 0.1327947477896041, "TOYOTA COROLLA HYBRID TSS2 2019": 0.21792021497538405, "TOYOTA RAV4 2019": 0.12757022360707945, "HYUNDAI PALISADE 2020": 0.13391574986922777, "TOYOTA SIENNA 2018": 0.1853443239485906, "ACURA RDX 2020": 0.18058553315570297, "TOYOTA RAV4 2017": 0.14319170324556796, "HONDA RIDGELINE 2017": 0.2380553573913589, "TOYOTA PRIUS 2017": 0.2079869382946584, "TOYOTA HIGHLANDER HYBRID 2020": 0.14038812589302646, "HYUNDAI SONATA 2020": 0.08266051305053168, "KIA STINGER GT2 2018": 0.11909534626930472, "TOYOTA HIGHLANDER 2020": 0.14658637853444048, "HONDA ACCORD 2018": 0.21616610462729247, "TOYOTA PRIUS TSS2 2021": 0.20613763260512002, "NISSAN LEAF 2018": NaN, "CHRYSLER PACIFICA HYBRID 2019": 0.16250373743651828, "LEXUS NX 2020": 0.14404022591302845, "TOYOTA RAV4 HYBRID 2019": 0.1319247989758836, "HONDA CIVIC (BOSCH) 2019": 0.2575217845562353, "KIA NIRO HYBRID 2021": 0.14468633728800306, "HONDA ACCORD HYBRID 2018": 0.21150723931119184, "LEXUS NX HYBRID 2018": 0.16117151597250162, "TOYOTA COROLLA TSS2 2019": 0.21045927995242877, "VOLKSWAGEN ARTEON 1ST GEN": 0.17828895368353925, "TOYOTA CAMRY HYBRID 2021": 0.16283734136957057, "VOLKSWAGEN JETTA 7TH GEN": 0.19508489725001105, "HONDA INSIGHT 2019": 0.25750800088299297, "SUBARU FORESTER 2019": 0.11783702069698135, "HYUNDAI ELANTRA 2021": 0.09377564130711125, "HYUNDAI IONIQ ELECTRIC LIMITED 2019": 0.14740189509875762, "HYUNDAI KONA HYBRID 2020": 0.0863709736632968, "HONDA ODYSSEY 2018": 0.2125595696498247, "LEXUS RX 2016": 0.21475140622981923, "TOYOTA COROLLA 2017": 0.12325064090161544, "LEXUS ES 2019": 0.12757526660498053, "HYUNDAI SANTA FE 2019": 0.12230125806479573, "TOYOTA AVALON 2022": 0.11030226705639488, "JEEP GRAND CHEROKEE V6 2018": 0.12871972792344108, "CHEVROLET VOLT PREMIER 2017": 0.16697256960295873, "TOYOTA RAV4 HYBRID 2017": 0.14074453855329072, "LEXUS RX 2020": 0.2249895411716623, "TOYOTA HIGHLANDER HYBRID 2018": 0.16692807938039034, "TOYOTA CAMRY HYBRID 2018": 0.13418904852016877, "TESLA AP2 MODEL S": NaN, "VOLKSWAGEN GOLF 7TH GEN": 0.19324413131475543, "TOYOTA MIRAI 2021": 0.20035237756713503, "LEXUS IS 2018": 0.073103111226694, "TOYOTA HIGHLANDER 2017": 0.17502689439420385, "HYUNDAI SONATA HYBRID 2021": 0.09518615688045734, "VOLKSWAGEN ATLAS 1ST GEN": 0.12761803335799474, "LEXUS ES HYBRID 2019": 0.1682771025433274, "HYUNDAI GENESIS 2015-2016": 0.10254237048034251, "JEEP GRAND CHEROKEE 2019": 0.15702739382013717, "SUBARU ASCENT LIMITED 2019": 0.12936982863095342, "HONDA CR-V 2017": 0.22518506713451308, "HONDA FIT 2018": 0.10803295063463647, "TOYOTA CAMRY 2021": 0.15512845523424743, "AUDI Q3 2ND GEN": 0.14083949977629878, "AUDI A3 3RD GEN": 0.1611945965384188, "LEXUS RX HYBRID 2017": 0.19322020114452776, "HONDA CIVIC 2022": 0.24279247053469405, "GENESIS G70 2018": 0.06869638264150804, "CHRYSLER PACIFICA HYBRID 2018": 0.13887505891474383, "VOLKSWAGEN PASSAT 8TH GEN": 0.21714039653367842, "HONDA CR-V 2016": 0.41726236462791455, "HYUNDAI IONIQ PHEV 2020": 0.13800461817330806, "GMC ACADIA DENALI 2018": 0.3447163106452739, "HYUNDAI SONATA 2019": 0.15371520337813344, "TOYOTA AVALON 2019": 0.10392921606262978, "TOYOTA C-HR 2018": 0.2015190716953846, "HONDA CR-V HYBRID 2019": 0.19595630321202379, "CHRYSLER PACIFICA 2020": 0.14337114313208268, "HYUNDAI IONIQ ELECTRIC 2020": 0.08104502306679212, "VOLKSWAGEN TIGUAN 2ND GEN": NaN, "LEXUS NX 2018": 0.1471001686544422, "KIA OPTIMA SX 2019 & 2016": 0.11703652166984638, "TOYOTA AVALON HYBRID 2019": 0.10863628402866225, "TOYOTA RAV4 HYBRID 2022": 0.14334213238415072, "HONDA PASSPORT 2021": 0.19826160782809032, "KIA K5 2021": 0.1027179720106188, "ACURA ILX 2016": 0.35663988815912573, "HYUNDAI IONIQ HYBRID 2017-2019": 0.12332151728479951, "KIA NIRO EV 2020": 0.0892074288578785, "SUBARU IMPREZA SPORT 2020": 0.15841234487251604, "CHRYSLER PACIFICA HYBRID 2017": 0.1345638758810282, "HYUNDAI KONA ELECTRIC 2019": 0.08503096350356723, "HYUNDAI ELANTRA HYBRID 2021": 0.09887804390243872, "HYUNDAI SANTA FE HYBRID 2022": 0.11171499761140577, "CHRYSLER PACIFICA 2018": 0.13611561752951415, "NISSAN ROGUE 2019": NaN, "KIA SORENTO GT LINE 2018": 0.10502695501512567, "COMMA BODY": NaN, "NISSAN LEAF 2018 Instrument Cluster": NaN, "LEXUS RX HYBRID 2020": 0.21818156330777305, "MAZDA CX-9 2021": 0.1793735649504697, "HYUNDAI SANTA FE 2022": 0.09184808719698756, "HYUNDAI SANTA FE PlUG-IN HYBRID 2022": 0.14050744688135813, "HONDA HRV 2019": 0.17840321248608593, "TOYOTA AVALON HYBRID 2022": 0.16159049452515487, "SUBARU IMPREZA LIMITED 2019": 0.20322553080306893, "GENESIS G80 2017": 0.07934444681782107, "VOLKSWAGEN TAOS 1ST GEN": 0.18276122764341485, "KIA FORTE E 2018 & GT 2021": 0.11406160665068436, "CADILLAC ESCALADE ESV 2016": 0.15063766975884627, "TOYOTA C-HR 2021": 0.22798633346500694, "TOYOTA C-HR HYBRID 2018": 0.2036375866375624}, "ERROR_RATIO": {"HONDA PILOT 2017": 0.6158457247286419, "HONDA CIVIC 2016": 2.0785618623350928, "TOYOTA CAMRY 2018": 0.17356565057429169, "TOYOTA COROLLA HYBRID TSS2 2019": 0.10094741777075293, "TOYOTA RAV4 2019": 0.11812042718338775, "HYUNDAI PALISADE 2020": 0.30639442561268304, "TOYOTA SIENNA 2018": 0.1117307389748361, "ACURA RDX 2020": 1.9801454495960717, "TOYOTA RAV4 2017": 0.08589486116378196, "HONDA RIDGELINE 2017": 0.4319851914417577, "TOYOTA PRIUS 2017": 0.17281316158588575, "TOYOTA HIGHLANDER HYBRID 2020": 0.046325388721577, "HYUNDAI SONATA 2020": 0.4109860794021653, "KIA STINGER GT2 2018": 0.3517628781488943, "TOYOTA HIGHLANDER 2020": 0.14155072865224166, "HONDA ACCORD 2018": 2.510398061115294, "TOYOTA PRIUS TSS2 2021": 0.13593456264106363, "NISSAN LEAF 2018": NaN, "CHRYSLER PACIFICA HYBRID 2019": 0.08794943266738546, "LEXUS NX 2020": 0.3743942573190866, "TOYOTA RAV4 HYBRID 2019": 0.0845492503791727, "HONDA CIVIC (BOSCH) 2019": 2.4329816697390063, "KIA NIRO HYBRID 2021": NaN, "HONDA ACCORD HYBRID 2018": 2.9252406767451804, "LEXUS NX HYBRID 2018": 0.23060712246809048, "TOYOTA COROLLA TSS2 2019": 0.13822363784977285, "VOLKSWAGEN ARTEON 1ST GEN": 0.009661691674299285, "TOYOTA CAMRY HYBRID 2021": 0.029451711159377333, "VOLKSWAGEN JETTA 7TH GEN": 0.16591473170144055, "HONDA INSIGHT 2019": 1.3398692842898896, "SUBARU FORESTER 2019": 0.5269683780697442, "HYUNDAI ELANTRA 2021": NaN, "HYUNDAI IONIQ ELECTRIC LIMITED 2019": 0.02971857401969039, "HYUNDAI KONA HYBRID 2020": NaN, "HONDA ODYSSEY 2018": 1.0245957242729038, "LEXUS RX 2016": 0.07392586589971588, "TOYOTA COROLLA 2017": 0.31336988069649124, "LEXUS ES 2019": 0.08933657038050916, "HYUNDAI SANTA FE 2019": 0.2276812089092099, "TOYOTA AVALON 2022": 0.07120118798045925, "JEEP GRAND CHEROKEE V6 2018": 0.2065164316228118, "CHEVROLET VOLT PREMIER 2017": 0.2316223989408518, "TOYOTA RAV4 HYBRID 2017": 0.055653752888652736, "LEXUS RX 2020": 0.047792182371008345, "TOYOTA HIGHLANDER HYBRID 2018": 0.019259474082467202, "TOYOTA CAMRY HYBRID 2018": 0.11949733140330816, "TESLA AP2 MODEL S": NaN, "VOLKSWAGEN GOLF 7TH GEN": 0.1996863736436734, "TOYOTA MIRAI 2021": 0.11019259478417197, "LEXUS IS 2018": NaN, "TOYOTA HIGHLANDER 2017": 0.05279963713251727, "HYUNDAI SONATA HYBRID 2021": 0.3543918194389536, "VOLKSWAGEN ATLAS 1ST GEN": 0.21694647502209782, "LEXUS ES HYBRID 2019": 0.14775474433507507, "HYUNDAI GENESIS 2015-2016": 0.0814892037361157, "JEEP GRAND CHEROKEE 2019": 0.3126997097753535, "SUBARU ASCENT LIMITED 2019": NaN, "HONDA CR-V 2017": 5.652613829506629, "HONDA FIT 2018": 1.5217432826711779, "TOYOTA CAMRY 2021": 0.07910435053686729, "AUDI Q3 2ND GEN": 0.13535089102138698, "AUDI A3 3RD GEN": 0.14353941401245793, "LEXUS RX HYBRID 2017": 0.048663813961824696, "HONDA CIVIC 2022": 1.0748206908458815, "GENESIS G70 2018": 0.688303429295532, "CHRYSLER PACIFICA HYBRID 2018": 0.11083725786301112, "VOLKSWAGEN PASSAT 8TH GEN": 0.13315924904555493, "HONDA CR-V 2016": 0.488871482749128, "HYUNDAI IONIQ PHEV 2020": 0.2756096845519595, "GMC ACADIA DENALI 2018": 0.24055364003040136, "HYUNDAI SONATA 2019": 0.4473315280277132, "TOYOTA AVALON 2019": 0.026428086100632363, "TOYOTA C-HR 2018": 0.06075105822970755, "HONDA CR-V HYBRID 2019": 2.9906016360828276, "CHRYSLER PACIFICA 2020": 0.07748732608487266, "HYUNDAI IONIQ ELECTRIC 2020": NaN, "VOLKSWAGEN TIGUAN 2ND GEN": NaN, "LEXUS NX 2018": 0.16318394527060903, "KIA OPTIMA SX 2019 & 2016": 0.4378756841929454, "TOYOTA AVALON HYBRID 2019": NaN, "TOYOTA RAV4 HYBRID 2022": 0.36478548056633514, "HONDA PASSPORT 2021": 0.5993860184637646, "KIA K5 2021": 0.6271500841947655, "ACURA ILX 2016": 0.8435442647921855, "HYUNDAI IONIQ HYBRID 2017-2019": NaN, "KIA NIRO EV 2020": 0.40355577782011604, "SUBARU IMPREZA SPORT 2020": 0.11071291640854522, "CHRYSLER PACIFICA HYBRID 2017": 0.029812269495458284, "HYUNDAI KONA ELECTRIC 2019": NaN, "HYUNDAI ELANTRA HYBRID 2021": NaN, "HYUNDAI SANTA FE HYBRID 2022": NaN, "CHRYSLER PACIFICA 2018": 0.01705753895996445, "NISSAN ROGUE 2019": NaN, "KIA SORENTO GT LINE 2018": NaN, "COMMA BODY": NaN, "NISSAN LEAF 2018 Instrument Cluster": NaN, "LEXUS RX HYBRID 2020": 0.05790668871480552, "MAZDA CX-9 2021": NaN, "HYUNDAI SANTA FE 2022": 0.018126919430513307, "HYUNDAI SANTA FE PlUG-IN HYBRID 2022": 0.1331760659016062, "HONDA HRV 2019": 1.599688433820939, "TOYOTA AVALON HYBRID 2022": NaN, "SUBARU IMPREZA LIMITED 2019": 0.2514545160390271, "GENESIS G80 2017": NaN, "VOLKSWAGEN TAOS 1ST GEN": 0.09725484306423876, "KIA FORTE E 2018 & GT 2021": 0.20381871942480628, "CADILLAC ESCALADE ESV 2016": NaN, "TOYOTA C-HR 2021": 0.05016813984196128, "TOYOTA C-HR HYBRID 2018": 0.2521485862766935}} \ No newline at end of file diff --git a/selfdrive/car/toyota/interface.py b/selfdrive/car/toyota/interface.py index 9440c73f5d..e737b4d2e7 100644 --- a/selfdrive/car/toyota/interface.py +++ b/selfdrive/car/toyota/interface.py @@ -74,7 +74,6 @@ class CarInterface(CarInterfaceBase): ret.wheelSpeedFactor = 1.035 tire_stiffness_factor = 0.5533 ret.mass = 4481. * CV.LB_TO_KG + STD_CARGO_KG # mean between min and max - ret.maxLateralAccel = 1.4 set_lat_tune(ret.lateralTuning, LatTunes.PID_C) elif candidate in (CAR.CHR, CAR.CHRH): @@ -83,7 +82,6 @@ class CarInterface(CarInterfaceBase): ret.steerRatio = 13.6 tire_stiffness_factor = 0.7933 ret.mass = 3300. * CV.LB_TO_KG + STD_CARGO_KG - ret.maxLateralAccel = 1.3 set_lat_tune(ret.lateralTuning, LatTunes.PID_F) elif candidate in (CAR.CAMRY, CAR.CAMRYH, CAR.CAMRY_TSS2, CAR.CAMRYH_TSS2): @@ -96,7 +94,6 @@ class CarInterface(CarInterfaceBase): ret.maxLateralAccel = 2.4 set_lat_tune(ret.lateralTuning, LatTunes.TORQUE, MAX_LAT_ACCEL=ret.maxLateralAccel, FRICTION=0.05) else: - ret.maxLateralAccel = 2.0 set_lat_tune(ret.lateralTuning, LatTunes.PID_C) elif candidate in (CAR.HIGHLANDER_TSS2, CAR.HIGHLANDERH_TSS2): @@ -105,7 +102,6 @@ class CarInterface(CarInterfaceBase): ret.steerRatio = 16.0 tire_stiffness_factor = 0.8 ret.mass = 4700. * CV.LB_TO_KG + STD_CARGO_KG # 4260 + 4-5 people - ret.maxLateralAccel = 2.0 set_lat_tune(ret.lateralTuning, LatTunes.PID_G) elif candidate in (CAR.HIGHLANDER, CAR.HIGHLANDERH): @@ -114,7 +110,6 @@ class CarInterface(CarInterfaceBase): ret.steerRatio = 16.0 tire_stiffness_factor = 0.8 ret.mass = 4607. * CV.LB_TO_KG + STD_CARGO_KG # mean between normal and hybrid limited - ret.maxLateralAccel = 1.8 set_lat_tune(ret.lateralTuning, LatTunes.PID_G) elif candidate in (CAR.AVALON, CAR.AVALON_2019, CAR.AVALONH_2019, CAR.AVALON_TSS2, CAR.AVALONH_TSS2): @@ -125,7 +120,6 @@ class CarInterface(CarInterfaceBase): ret.steerRatio = 14.8 # Found at https://pressroom.toyota.com/releases/2016+avalon+product+specs.download tire_stiffness_factor = 0.7983 ret.mass = 3505. * CV.LB_TO_KG + STD_CARGO_KG # mean between normal and hybrid - ret.maxLateralAccel = 1.6 set_lat_tune(ret.lateralTuning, LatTunes.PID_H) elif candidate in (CAR.RAV4_TSS2, CAR.RAV4_TSS2_2022, CAR.RAV4H_TSS2, CAR.RAV4H_TSS2_2022): @@ -134,7 +128,6 @@ class CarInterface(CarInterfaceBase): ret.steerRatio = 14.3 tire_stiffness_factor = 0.7933 ret.mass = 3585. * CV.LB_TO_KG + STD_CARGO_KG # Average between ICE and Hybrid - ret.maxLateralAccel = 2.5 set_lat_tune(ret.lateralTuning, LatTunes.PID_D) # 2019+ RAV4 TSS2 uses two different steering racks and specific tuning seems to be necessary. @@ -159,7 +152,6 @@ class CarInterface(CarInterfaceBase): ret.steerRatio = 16.0 # not optimized tire_stiffness_factor = 0.444 # not optimized yet ret.mass = 3677. * CV.LB_TO_KG + STD_CARGO_KG # mean between min and max - ret.maxLateralAccel = 2.2 set_lat_tune(ret.lateralTuning, LatTunes.PID_D) elif candidate == CAR.SIENNA: @@ -168,7 +160,6 @@ class CarInterface(CarInterfaceBase): ret.steerRatio = 15.5 tire_stiffness_factor = 0.444 ret.mass = 4590. * CV.LB_TO_KG + STD_CARGO_KG - ret.maxLateralAccel = 1.6 set_lat_tune(ret.lateralTuning, LatTunes.PID_J) elif candidate in (CAR.LEXUS_IS, CAR.LEXUS_RC): @@ -192,7 +183,6 @@ class CarInterface(CarInterfaceBase): ret.steerRatio = 14.7 tire_stiffness_factor = 0.444 # not optimized yet ret.mass = 4070 * CV.LB_TO_KG + STD_CARGO_KG - ret.maxLateralAccel = 2.0 set_lat_tune(ret.lateralTuning, LatTunes.PID_C) elif candidate == CAR.PRIUS_TSS2: @@ -201,7 +191,6 @@ class CarInterface(CarInterfaceBase): ret.steerRatio = 13.4 # True steerRatio from older prius tire_stiffness_factor = 0.6371 # hand-tune ret.mass = 3115. * CV.LB_TO_KG + STD_CARGO_KG - ret.maxLateralAccel = 2.0 set_lat_tune(ret.lateralTuning, LatTunes.PID_N) elif candidate == CAR.MIRAI: @@ -210,7 +199,6 @@ class CarInterface(CarInterfaceBase): ret.steerRatio = 14.8 tire_stiffness_factor = 0.8 ret.mass = 4300. * CV.LB_TO_KG + STD_CARGO_KG - ret.maxLateralAccel = 2.4 set_lat_tune(ret.lateralTuning, LatTunes.PID_C) elif candidate in (CAR.ALPHARD_TSS2, CAR.ALPHARDH_TSS2): diff --git a/selfdrive/car/toyota/values.py b/selfdrive/car/toyota/values.py index 7e6cfa0d09..2c151266cf 100644 --- a/selfdrive/car/toyota/values.py +++ b/selfdrive/car/toyota/values.py @@ -1585,7 +1585,7 @@ FW_VERSIONS = { ], }, CAR.LEXUS_NXH_TSS2: { - (Ecu.engine, 0x700, None): [ + (Ecu.engine, 0x7e0, None): [ b'\x0237887000\x00\x00\x00\x00\x00\x00\x00\x00A4701000\x00\x00\x00\x00\x00\x00\x00\x00', ], (Ecu.esp, 0x7b0, None): [ diff --git a/selfdrive/car/volkswagen/interface.py b/selfdrive/car/volkswagen/interface.py index 90bbd6d889..3a0d7c8ce8 100644 --- a/selfdrive/car/volkswagen/interface.py +++ b/selfdrive/car/volkswagen/interface.py @@ -64,17 +64,14 @@ class CarInterface(CarInterfaceBase): elif candidate == CAR.ATLAS_MK1: ret.mass = 2011 + STD_CARGO_KG ret.wheelbase = 2.98 - ret.maxLateralAccel = 1.4 elif candidate == CAR.GOLF_MK7: ret.mass = 1397 + STD_CARGO_KG ret.wheelbase = 2.62 - ret.maxLateralAccel = 1.5 elif candidate == CAR.JETTA_MK7: ret.mass = 1328 + STD_CARGO_KG ret.wheelbase = 2.71 - ret.maxLateralAccel = 1.2 elif candidate == CAR.PASSAT_MK8: ret.mass = 1551 + STD_CARGO_KG @@ -95,7 +92,6 @@ class CarInterface(CarInterfaceBase): elif candidate == CAR.TIGUAN_MK2: ret.mass = 1715 + STD_CARGO_KG ret.wheelbase = 2.74 - ret.maxLateralAccel = 1.1 elif candidate == CAR.TOURAN_MK2: ret.mass = 1516 + STD_CARGO_KG @@ -113,7 +109,6 @@ class CarInterface(CarInterfaceBase): elif candidate == CAR.AUDI_A3_MK3: ret.mass = 1335 + STD_CARGO_KG ret.wheelbase = 2.61 - ret.maxLateralAccel = 1.7 elif candidate == CAR.AUDI_Q2_MK1: ret.mass = 1205 + STD_CARGO_KG @@ -122,7 +117,6 @@ class CarInterface(CarInterfaceBase): elif candidate == CAR.AUDI_Q3_MK2: ret.mass = 1623 + STD_CARGO_KG ret.wheelbase = 2.68 - ret.maxLateralAccel = 1.6 elif candidate == CAR.SEAT_ATECA_MK1: ret.mass = 1900 + STD_CARGO_KG diff --git a/selfdrive/debug/count_events.py b/selfdrive/debug/count_events.py index 8b32ce9d21..c3870e0f9e 100755 --- a/selfdrive/debug/count_events.py +++ b/selfdrive/debug/count_events.py @@ -4,6 +4,7 @@ from collections import Counter from pprint import pprint from tqdm import tqdm +from cereal.services import service_list from tools.lib.route import Route from tools.lib.logreader import LogReader @@ -13,6 +14,9 @@ if __name__ == "__main__": cnt_valid: Counter = Counter() cnt_events: Counter = Counter() + cams = [s for s in service_list if s.endswith('CameraState')] + cnt_cameras = dict.fromkeys(cams, 0) + for q in tqdm(r.qlog_paths()): if q is None: continue @@ -21,12 +25,21 @@ if __name__ == "__main__": if msg.which() == 'carEvents': for e in msg.carEvents: cnt_events[e.name] += 1 + elif msg.which() in cams: + cnt_cameras[msg.which()] += 1 + if not msg.valid: cnt_valid[msg.which()] += 1 + print("Events") pprint(cnt_events) - print("\n\n") + print("\n") print("Not valid") pprint(cnt_valid) + + print("\n") + print("Cameras") + for k, v in cnt_cameras.items(): + print(" ", k.ljust(20), v) diff --git a/selfdrive/hardware/tici/test_power_draw.py b/selfdrive/hardware/tici/test_power_draw.py index 5eb84514e5..ab2d691a09 100755 --- a/selfdrive/hardware/tici/test_power_draw.py +++ b/selfdrive/hardware/tici/test_power_draw.py @@ -21,7 +21,7 @@ class Proc: PROCS = [ Proc('camerad', 2.15), Proc('modeld', 1.0), - Proc('dmonitoringmodeld', 0.35), + Proc('dmonitoringmodeld', 0.25), Proc('encoderd', 0.23), ] diff --git a/selfdrive/modeld/dmonitoringmodeld.cc b/selfdrive/modeld/dmonitoringmodeld.cc index cde13a9bee..68c49572e6 100644 --- a/selfdrive/modeld/dmonitoringmodeld.cc +++ b/selfdrive/modeld/dmonitoringmodeld.cc @@ -12,7 +12,7 @@ ExitHandler do_exit; void run_model(DMonitoringModelState &model, VisionIpcClient &vipc_client) { - PubMaster pm({"driverStateV2"}); + PubMaster pm({"driverState"}); SubMaster sm({"liveCalibration"}); float calib[CALIB_LEN] = {0}; double last = 0; @@ -31,11 +31,11 @@ void run_model(DMonitoringModelState &model, VisionIpcClient &vipc_client) { } double t1 = millis_since_boot(); - DMonitoringModelResult model_res = dmonitoring_eval_frame(&model, buf->addr, buf->width, buf->height, buf->stride, buf->uv_offset, calib); + DMonitoringResult res = dmonitoring_eval_frame(&model, buf->addr, buf->width, buf->height, buf->stride, buf->uv_offset, calib); double t2 = millis_since_boot(); // send dm packet - dmonitoring_publish(pm, extra.frame_id, model_res, (t2 - t1) / 1000.0, model.output); + dmonitoring_publish(pm, extra.frame_id, res, (t2 - t1) / 1000.0, model.output); //printf("dmonitoring process: %.2fms, from last %.2fms\n", t2 - t1, t1 - last); last = t1; diff --git a/selfdrive/modeld/models/dmonitoring.cc b/selfdrive/modeld/models/dmonitoring.cc index 20294c3f3c..e134ad3a5a 100644 --- a/selfdrive/modeld/models/dmonitoring.cc +++ b/selfdrive/modeld/models/dmonitoring.cc @@ -10,8 +10,8 @@ #include "selfdrive/modeld/models/dmonitoring.h" -constexpr int MODEL_WIDTH = 1440; -constexpr int MODEL_HEIGHT = 960; +constexpr int MODEL_WIDTH = 320; +constexpr int MODEL_HEIGHT = 640; template static inline T *get_buffer(std::vector &buf, const size_t size) { @@ -19,115 +19,199 @@ static inline T *get_buffer(std::vector &buf, const size_t size) { return buf.data(); } +static inline void init_yuv_buf(std::vector &buf, const int width, int height) { + uint8_t *y = get_buffer(buf, width * height * 3 / 2); + uint8_t *u = y + width * height; + uint8_t *v = u + (width / 2) * (height / 2); + + // needed on comma two to make the padded border black + // equivalent to RGB(0,0,0) in YUV space + memset(y, 16, width * height); + memset(u, 128, (width / 2) * (height / 2)); + memset(v, 128, (width / 2) * (height / 2)); +} + void dmonitoring_init(DMonitoringModelState* s) { s->is_rhd = Params().getBool("IsRHD"); + for (int x = 0; x < std::size(s->tensor); ++x) { + s->tensor[x] = (x - 128.f) * 0.0078125f; + } + init_yuv_buf(s->resized_buf, MODEL_WIDTH, MODEL_HEIGHT); #ifdef USE_ONNX_MODEL - s->m = new ONNXModel("models/dmonitoring_model.onnx", &s->output[0], OUTPUT_SIZE, USE_DSP_RUNTIME, false, true); + s->m = new ONNXModel("models/dmonitoring_model.onnx", &s->output[0], OUTPUT_SIZE, USE_DSP_RUNTIME); #else - s->m = new SNPEModel("models/dmonitoring_model_q.dlc", &s->output[0], OUTPUT_SIZE, USE_DSP_RUNTIME, false, true); + s->m = new SNPEModel("models/dmonitoring_model_q.dlc", &s->output[0], OUTPUT_SIZE, USE_DSP_RUNTIME); #endif s->m->addCalib(s->calib, CALIB_LEN); } -void parse_driver_data(DriverStateResult &ds_res, const DMonitoringModelState* s, int out_idx_offset) { - for (int i = 0; i < 3; ++i) { - ds_res.face_orientation[i] = s->output[out_idx_offset+i] * REG_SCALE; - ds_res.face_orientation_std[i] = exp(s->output[out_idx_offset+6+i]); - } - for (int i = 0; i < 2; ++i) { - ds_res.face_position[i] = s->output[out_idx_offset+3+i] * REG_SCALE; - ds_res.face_position_std[i] = exp(s->output[out_idx_offset+9+i]); - } - for (int i = 0; i < 4; ++i) { - ds_res.ready_prob[i] = sigmoid(s->output[out_idx_offset+35+i]); - } - for (int i = 0; i < 2; ++i) { - ds_res.not_ready_prob[i] = sigmoid(s->output[out_idx_offset+39+i]); - } - ds_res.face_prob = sigmoid(s->output[out_idx_offset+12]); - ds_res.left_eye_prob = sigmoid(s->output[out_idx_offset+21]); - ds_res.right_eye_prob = sigmoid(s->output[out_idx_offset+30]); - ds_res.left_blink_prob = sigmoid(s->output[out_idx_offset+31]); - ds_res.right_blink_prob = sigmoid(s->output[out_idx_offset+32]); - ds_res.sunglasses_prob = sigmoid(s->output[out_idx_offset+33]); - ds_res.occluded_prob = sigmoid(s->output[out_idx_offset+34]); +static inline auto get_yuv_buf(std::vector &buf, const int width, int height) { + uint8_t *y = get_buffer(buf, width * height * 3 / 2); + uint8_t *u = y + width * height; + uint8_t *v = u + (width /2) * (height / 2); + return std::make_tuple(y, u, v); } -void fill_driver_data(cereal::DriverStateV2::DriverData::Builder ddata, const DriverStateResult &ds_res) { - ddata.setFaceOrientation(ds_res.face_orientation); - ddata.setFaceOrientationStd(ds_res.face_orientation_std); - ddata.setFacePosition(ds_res.face_position); - ddata.setFacePositionStd(ds_res.face_position_std); - ddata.setFaceProb(ds_res.face_prob); - ddata.setLeftEyeProb(ds_res.left_eye_prob); - ddata.setRightEyeProb(ds_res.right_eye_prob); - ddata.setLeftBlinkProb(ds_res.left_blink_prob); - ddata.setRightBlinkProb(ds_res.right_blink_prob); - ddata.setSunglassesProb(ds_res.sunglasses_prob); - ddata.setOccludedProb(ds_res.occluded_prob); - ddata.setReadyProb(ds_res.ready_prob); - ddata.setNotReadyProb(ds_res.not_ready_prob); +struct Rect {int x, y, w, h;}; +void crop_nv12_to_yuv(uint8_t *raw, int stride, int uv_offset, uint8_t *y, uint8_t *u, uint8_t *v, const Rect &rect) { + uint8_t *raw_y = raw; + uint8_t *raw_uv = raw_y + uv_offset; + for (int r = 0; r < rect.h / 2; r++) { + memcpy(y + 2 * r * rect.w, raw_y + (2 * r + rect.y) * stride + rect.x, rect.w); + memcpy(y + (2 * r + 1) * rect.w, raw_y + (2 * r + rect.y + 1) * stride + rect.x, rect.w); + for (int h = 0; h < rect.w / 2; h++) { + u[r * rect.w/2 + h] = raw_uv[(r + (rect.y/2)) * stride + (rect.x/2 + h)*2]; + v[r * rect.w/2 + h] = raw_uv[(r + (rect.y/2)) * stride + (rect.x/2 + h)*2 + 1]; + } + } } -DMonitoringModelResult dmonitoring_eval_frame(DMonitoringModelState* s, void* stream_buf, int width, int height, int stride, int uv_offset, float *calib) { - int v_off = height - MODEL_HEIGHT; - int h_off = (width - MODEL_WIDTH) / 2; - int yuv_buf_len = MODEL_WIDTH * MODEL_HEIGHT; - - uint8_t *raw_buf = (uint8_t *) stream_buf; - // vertical crop free - uint8_t *raw_y_start = raw_buf + stride * v_off; +DMonitoringResult dmonitoring_eval_frame(DMonitoringModelState* s, void* stream_buf, int width, int height, int stride, int uv_offset, float *calib) { + const int cropped_height = tici_dm_crop::width / 1.33; + Rect crop_rect = {width / 2 - tici_dm_crop::width / 2 + tici_dm_crop::x_offset, + height / 2 - cropped_height / 2 + tici_dm_crop::y_offset, + cropped_height / 2, + cropped_height}; + if (!s->is_rhd) { + crop_rect.x += tici_dm_crop::width - crop_rect.w; + } - uint8_t *net_input_buf = get_buffer(s->net_input_buf, yuv_buf_len); + int resized_width = MODEL_WIDTH; + int resized_height = MODEL_HEIGHT; + + auto [cropped_y, cropped_u, cropped_v] = get_yuv_buf(s->cropped_buf, crop_rect.w, crop_rect.h); + if (!s->is_rhd) { + crop_nv12_to_yuv((uint8_t *)stream_buf, stride, uv_offset, cropped_y, cropped_u, cropped_v, crop_rect); + } else { + auto [mirror_y, mirror_u, mirror_v] = get_yuv_buf(s->premirror_cropped_buf, crop_rect.w, crop_rect.h); + crop_nv12_to_yuv((uint8_t *)stream_buf, stride, uv_offset, mirror_y, mirror_u, mirror_v, crop_rect); + libyuv::I420Mirror(mirror_y, crop_rect.w, + mirror_u, crop_rect.w / 2, + mirror_v, crop_rect.w / 2, + cropped_y, crop_rect.w, + cropped_u, crop_rect.w / 2, + cropped_v, crop_rect.w / 2, + crop_rect.w, crop_rect.h); + } - // here makes a uint8 copy - for (int r = 0; r < MODEL_HEIGHT; ++r) { - memcpy(net_input_buf + r * MODEL_WIDTH, raw_y_start + r * stride + h_off, MODEL_WIDTH); + auto [resized_buf, resized_u, resized_v] = get_yuv_buf(s->resized_buf, resized_width, resized_height); + uint8_t *resized_y = resized_buf; + libyuv::FilterMode mode = libyuv::FilterModeEnum::kFilterBilinear; + libyuv::I420Scale(cropped_y, crop_rect.w, + cropped_u, crop_rect.w / 2, + cropped_v, crop_rect.w / 2, + crop_rect.w, crop_rect.h, + resized_y, resized_width, + resized_u, resized_width / 2, + resized_v, resized_width / 2, + resized_width, resized_height, + mode); + + + int yuv_buf_len = (MODEL_WIDTH/2) * (MODEL_HEIGHT/2) * 6; // Y|u|v -> y|y|y|y|u|v + float *net_input_buf = get_buffer(s->net_input_buf, yuv_buf_len); + // one shot conversion, O(n) anyway + // yuvframe2tensor, normalize + for (int r = 0; r < MODEL_HEIGHT/2; r++) { + for (int c = 0; c < MODEL_WIDTH/2; c++) { + // Y_ul + net_input_buf[(r*MODEL_WIDTH/2) + c + (0*(MODEL_WIDTH/2)*(MODEL_HEIGHT/2))] = s->tensor[resized_y[(2*r)*resized_width + 2*c]]; + // Y_dl + net_input_buf[(r*MODEL_WIDTH/2) + c + (1*(MODEL_WIDTH/2)*(MODEL_HEIGHT/2))] = s->tensor[resized_y[(2*r+1)*resized_width + 2*c]]; + // Y_ur + net_input_buf[(r*MODEL_WIDTH/2) + c + (2*(MODEL_WIDTH/2)*(MODEL_HEIGHT/2))] = s->tensor[resized_y[(2*r)*resized_width + 2*c+1]]; + // Y_dr + net_input_buf[(r*MODEL_WIDTH/2) + c + (3*(MODEL_WIDTH/2)*(MODEL_HEIGHT/2))] = s->tensor[resized_y[(2*r+1)*resized_width + 2*c+1]]; + // U + net_input_buf[(r*MODEL_WIDTH/2) + c + (4*(MODEL_WIDTH/2)*(MODEL_HEIGHT/2))] = s->tensor[resized_u[r*resized_width/2 + c]]; + // V + net_input_buf[(r*MODEL_WIDTH/2) + c + (5*(MODEL_WIDTH/2)*(MODEL_HEIGHT/2))] = s->tensor[resized_v[r*resized_width/2 + c]]; + } } - // printf("preprocess completed. %d \n", yuv_buf_len); - // FILE *dump_yuv_file = fopen("/tmp/rawdump.yuv", "wb"); - // fwrite(net_input_buf, yuv_buf_len, sizeof(uint8_t), dump_yuv_file); - // fclose(dump_yuv_file); + //printf("preprocess completed. %d \n", yuv_buf_len); + //FILE *dump_yuv_file = fopen("/tmp/rawdump.yuv", "wb"); + //fwrite(resized_buf, yuv_buf_len, sizeof(uint8_t), dump_yuv_file); + //fclose(dump_yuv_file); + + // *** testing *** + // idat = np.frombuffer(open("/tmp/inputdump.yuv", "rb").read(), np.float32).reshape(6, 160, 320) + // imshow(cv2.cvtColor(tensor_to_frames(idat[None]/0.0078125+128)[0], cv2.COLOR_YUV2RGB_I420)) + + //FILE *dump_yuv_file2 = fopen("/tmp/inputdump.yuv", "wb"); + //fwrite(net_input_buf, MODEL_HEIGHT*MODEL_WIDTH*3/2, sizeof(float), dump_yuv_file2); + //fclose(dump_yuv_file2); double t1 = millis_since_boot(); - s->m->addImage((float*)net_input_buf, yuv_buf_len / 4); + s->m->addImage(net_input_buf, yuv_buf_len); for (int i = 0; i < CALIB_LEN; i++) { s->calib[i] = calib[i]; } s->m->execute(); double t2 = millis_since_boot(); - DMonitoringModelResult model_res = {0}; - parse_driver_data(model_res.driver_state_lhd, s, 0); - parse_driver_data(model_res.driver_state_rhd, s, 41); - model_res.poor_vision_prob = sigmoid(s->output[82]); - model_res.wheel_on_right_prob = sigmoid(s->output[83]); - model_res.dsp_execution_time = (t2 - t1) / 1000.; - - return model_res; + DMonitoringResult ret = {0}; + for (int i = 0; i < 3; ++i) { + ret.face_orientation[i] = s->output[i] * REG_SCALE; + ret.face_orientation_meta[i] = exp(s->output[6 + i]); + } + for (int i = 0; i < 2; ++i) { + ret.face_position[i] = s->output[3 + i] * REG_SCALE; + ret.face_position_meta[i] = exp(s->output[9 + i]); + } + for (int i = 0; i < 4; ++i) { + ret.ready_prob[i] = sigmoid(s->output[39 + i]); + } + for (int i = 0; i < 2; ++i) { + ret.not_ready_prob[i] = sigmoid(s->output[43 + i]); + } + ret.face_prob = sigmoid(s->output[12]); + ret.left_eye_prob = sigmoid(s->output[21]); + ret.right_eye_prob = sigmoid(s->output[30]); + ret.left_blink_prob = sigmoid(s->output[31]); + ret.right_blink_prob = sigmoid(s->output[32]); + ret.sg_prob = sigmoid(s->output[33]); + ret.poor_vision = sigmoid(s->output[34]); + ret.partial_face = sigmoid(s->output[35]); + ret.distracted_pose = sigmoid(s->output[36]); + ret.distracted_eyes = sigmoid(s->output[37]); + ret.occluded_prob = sigmoid(s->output[38]); + ret.dsp_execution_time = (t2 - t1) / 1000.; + return ret; } -void dmonitoring_publish(PubMaster &pm, uint32_t frame_id, const DMonitoringModelResult &model_res, float execution_time, kj::ArrayPtr raw_pred) { +void dmonitoring_publish(PubMaster &pm, uint32_t frame_id, const DMonitoringResult &res, float execution_time, kj::ArrayPtr raw_pred) { // make msg MessageBuilder msg; - auto framed = msg.initEvent().initDriverStateV2(); + auto framed = msg.initEvent().initDriverState(); framed.setFrameId(frame_id); framed.setModelExecutionTime(execution_time); - framed.setDspExecutionTime(model_res.dsp_execution_time); - - framed.setPoorVisionProb(model_res.poor_vision_prob); - framed.setWheelOnRightProb(model_res.wheel_on_right_prob); - fill_driver_data(framed.initLeftDriverData(), model_res.driver_state_lhd); - fill_driver_data(framed.initRightDriverData(), model_res.driver_state_rhd); - + framed.setDspExecutionTime(res.dsp_execution_time); + + framed.setFaceOrientation(res.face_orientation); + framed.setFaceOrientationStd(res.face_orientation_meta); + framed.setFacePosition(res.face_position); + framed.setFacePositionStd(res.face_position_meta); + framed.setFaceProb(res.face_prob); + framed.setLeftEyeProb(res.left_eye_prob); + framed.setRightEyeProb(res.right_eye_prob); + framed.setLeftBlinkProb(res.left_blink_prob); + framed.setRightBlinkProb(res.right_blink_prob); + framed.setSunglassesProb(res.sg_prob); + framed.setPoorVision(res.poor_vision); + framed.setPartialFace(res.partial_face); + framed.setDistractedPose(res.distracted_pose); + framed.setDistractedEyes(res.distracted_eyes); + framed.setOccludedProb(res.occluded_prob); + framed.setReadyProb(res.ready_prob); + framed.setNotReadyProb(res.not_ready_prob); if (send_raw_pred) { framed.setRawPredictions(raw_pred.asBytes()); } - pm.send("driverStateV2", msg); + pm.send("driverState", msg); } void dmonitoring_free(DMonitoringModelState* s) { diff --git a/selfdrive/modeld/models/dmonitoring.h b/selfdrive/modeld/models/dmonitoring.h index 874722cd93..a1be91e3bb 100644 --- a/selfdrive/modeld/models/dmonitoring.h +++ b/selfdrive/modeld/models/dmonitoring.h @@ -9,43 +9,44 @@ #define CALIB_LEN 3 -#define OUTPUT_SIZE 84 +#define OUTPUT_SIZE 45 #define REG_SCALE 0.25f -typedef struct DriverStateResult { +typedef struct DMonitoringResult { float face_orientation[3]; - float face_orientation_std[3]; + float face_orientation_meta[3]; float face_position[2]; - float face_position_std[2]; + float face_position_meta[2]; float face_prob; float left_eye_prob; float right_eye_prob; float left_blink_prob; float right_blink_prob; - float sunglasses_prob; + float sg_prob; + float poor_vision; + float partial_face; + float distracted_pose; + float distracted_eyes; float occluded_prob; float ready_prob[4]; float not_ready_prob[2]; -} DriverStateResult; - -typedef struct DMonitoringModelResult { - DriverStateResult driver_state_lhd; - DriverStateResult driver_state_rhd; - float poor_vision_prob; - float wheel_on_right_prob; float dsp_execution_time; -} DMonitoringModelResult; +} DMonitoringResult; typedef struct DMonitoringModelState { RunModel *m; bool is_rhd; float output[OUTPUT_SIZE]; - std::vector net_input_buf; + std::vector resized_buf; + std::vector cropped_buf; + std::vector premirror_cropped_buf; + std::vector net_input_buf; float calib[CALIB_LEN]; + float tensor[UINT8_MAX + 1]; } DMonitoringModelState; void dmonitoring_init(DMonitoringModelState* s); -DMonitoringModelResult dmonitoring_eval_frame(DMonitoringModelState* s, void* stream_buf, int width, int height, int stride, int uv_offset, float *calib); -void dmonitoring_publish(PubMaster &pm, uint32_t frame_id, const DMonitoringModelResult &model_res, float execution_time, kj::ArrayPtr raw_pred); +DMonitoringResult dmonitoring_eval_frame(DMonitoringModelState* s, void* stream_buf, int width, int height, int stride, int uv_offset, float *calib); +void dmonitoring_publish(PubMaster &pm, uint32_t frame_id, const DMonitoringResult &res, float execution_time, kj::ArrayPtr raw_pred); void dmonitoring_free(DMonitoringModelState* s); diff --git a/selfdrive/modeld/models/dmonitoring_model.current b/selfdrive/modeld/models/dmonitoring_model.current index ba2865429e..74bcfe17a4 100644 --- a/selfdrive/modeld/models/dmonitoring_model.current +++ b/selfdrive/modeld/models/dmonitoring_model.current @@ -1,2 +1,2 @@ -5b02cff5-2b29-431d-b186-372e9c6fd0c7 -bf33cc569076984626ac7e027f927aa593261fa7 \ No newline at end of file +a8236e30-5bee-4689-8ea0-fc102e2770e5 +d508c79bae1c1c451f3af3e2bc231ce33678cb43 \ No newline at end of file diff --git a/selfdrive/modeld/models/dmonitoring_model.onnx b/selfdrive/modeld/models/dmonitoring_model.onnx index 1fca1317d5..51b0d1ed76 100644 --- a/selfdrive/modeld/models/dmonitoring_model.onnx +++ b/selfdrive/modeld/models/dmonitoring_model.onnx @@ -1,3 +1,3 @@ version https://git-lfs.github.com/spec/v1 -oid sha256:aca1dd411b5f488bea605dc360656e631fc4301968a589ea072e2220c8092600 -size 9157561 +oid sha256:00731ebd06fcff7e5837607b91bc56cad3bed5d7ee89052c911c981e8f665308 +size 3679940 diff --git a/selfdrive/modeld/models/dmonitoring_model_q.dlc b/selfdrive/modeld/models/dmonitoring_model_q.dlc index c1cba15176..2e54f7ee4b 100644 --- a/selfdrive/modeld/models/dmonitoring_model_q.dlc +++ b/selfdrive/modeld/models/dmonitoring_model_q.dlc @@ -1,3 +1,3 @@ version https://git-lfs.github.com/spec/v1 -oid sha256:d146b1d1fd9d40d57d058e51d285f83676866e26d9e5aff9fa27623ce343b58a -size 2636941 +oid sha256:667df5e925570a0f6a33dfb890e186a1f13f101885b46db47ec45305737dffb6 +size 1145921 diff --git a/selfdrive/modeld/runners/onnx_runner.py b/selfdrive/modeld/runners/onnx_runner.py index ac7cc68814..e282a66b66 100755 --- a/selfdrive/modeld/runners/onnx_runner.py +++ b/selfdrive/modeld/runners/onnx_runner.py @@ -9,24 +9,20 @@ os.environ["OMP_WAIT_POLICY"] = "PASSIVE" import onnxruntime as ort # pylint: disable=import-error -def read(sz, tf8=False): +def read(sz): dd = [] gt = 0 - szof = 1 if tf8 else 4 - while gt < sz * szof: - st = os.read(0, sz * szof - gt) + while gt < sz * 4: + st = os.read(0, sz * 4 - gt) assert(len(st) > 0) dd.append(st) gt += len(st) - r = np.frombuffer(b''.join(dd), dtype=np.uint8 if tf8 else np.float32).astype(np.float32) - if tf8: - r = r / 255. - return r + return np.frombuffer(b''.join(dd), dtype=np.float32) def write(d): os.write(1, d.tobytes()) -def run_loop(m, tf8_input=False): +def run_loop(m): ishapes = [[1]+ii.shape[1:] for ii in m.get_inputs()] keys = [x.name for x in m.get_inputs()] @@ -37,10 +33,10 @@ def run_loop(m, tf8_input=False): print("ready to run onnx model", keys, ishapes, file=sys.stderr) while 1: inputs = [] - for k, shp in zip(keys, ishapes): + for shp in ishapes: ts = np.product(shp) #print("reshaping %s with offset %d" % (str(shp), offset), file=sys.stderr) - inputs.append(read(ts, (k=='input_img' and tf8_input)).reshape(shp)) + inputs.append(read(ts).reshape(shp)) ret = m.run(None, dict(zip(keys, inputs))) #print(ret, file=sys.stderr) for r in ret: @@ -48,7 +44,6 @@ def run_loop(m, tf8_input=False): if __name__ == "__main__": - print(sys.argv, file=sys.stderr) print("Onnx available providers: ", ort.get_available_providers(), file=sys.stderr) options = ort.SessionOptions() options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_DISABLE_ALL @@ -68,6 +63,6 @@ if __name__ == "__main__": print("Onnx selected provider: ", [provider], file=sys.stderr) ort_session = ort.InferenceSession(sys.argv[1], options, providers=[provider]) print("Onnx using ", ort_session.get_providers(), file=sys.stderr) - run_loop(ort_session, tf8_input=("--use_tf8" in sys.argv)) + run_loop(ort_session) except KeyboardInterrupt: pass diff --git a/selfdrive/modeld/runners/onnxmodel.cc b/selfdrive/modeld/runners/onnxmodel.cc index 1f9f551abc..9b4d6fd015 100644 --- a/selfdrive/modeld/runners/onnxmodel.cc +++ b/selfdrive/modeld/runners/onnxmodel.cc @@ -14,13 +14,12 @@ #include "common/swaglog.h" #include "common/util.h" -ONNXModel::ONNXModel(const char *path, float *_output, size_t _output_size, int runtime, bool _use_extra, bool _use_tf8) { +ONNXModel::ONNXModel(const char *path, float *_output, size_t _output_size, int runtime, bool _use_extra) { LOGD("loading model %s", path); output = _output; output_size = _output_size; use_extra = _use_extra; - use_tf8 = _use_tf8; int err = pipe(pipein); assert(err == 0); @@ -29,12 +28,11 @@ ONNXModel::ONNXModel(const char *path, float *_output, size_t _output_size, int std::string exe_dir = util::dir_name(util::readlink("/proc/self/exe")); std::string onnx_runner = exe_dir + "/runners/onnx_runner.py"; - std::string tf8_arg = use_tf8 ? "--use_tf8" : ""; proc_pid = fork(); if (proc_pid == 0) { LOGD("spawning onnx process %s", onnx_runner.c_str()); - char *argv[] = {(char*)onnx_runner.c_str(), (char*)path, (char*)tf8_arg.c_str(), nullptr}; + char *argv[] = {(char*)onnx_runner.c_str(), (char*)path, nullptr}; dup2(pipein[0], 0); dup2(pipeout[1], 1); close(pipein[0]); diff --git a/selfdrive/modeld/runners/onnxmodel.h b/selfdrive/modeld/runners/onnxmodel.h index 4ac599e2af..567d81d29e 100644 --- a/selfdrive/modeld/runners/onnxmodel.h +++ b/selfdrive/modeld/runners/onnxmodel.h @@ -6,7 +6,7 @@ class ONNXModel : public RunModel { public: - ONNXModel(const char *path, float *output, size_t output_size, int runtime, bool use_extra = false, bool _use_tf8 = false); + ONNXModel(const char *path, float *output, size_t output_size, int runtime, bool use_extra = false); ~ONNXModel(); void addRecurrent(float *state, int state_size); void addDesire(float *state, int state_size); @@ -31,7 +31,6 @@ private: int calib_size; float *image_input_buf = NULL; int image_buf_size; - bool use_tf8; float *extra_input_buf = NULL; int extra_buf_size; bool use_extra; diff --git a/selfdrive/modeld/runners/snpemodel.cc b/selfdrive/modeld/runners/snpemodel.cc index 4d6917e894..1861494d59 100644 --- a/selfdrive/modeld/runners/snpemodel.cc +++ b/selfdrive/modeld/runners/snpemodel.cc @@ -14,11 +14,10 @@ void PrintErrorStringAndExit() { std::exit(EXIT_FAILURE); } -SNPEModel::SNPEModel(const char *path, float *loutput, size_t loutput_size, int runtime, bool luse_extra, bool luse_tf8) { +SNPEModel::SNPEModel(const char *path, float *loutput, size_t loutput_size, int runtime, bool luse_extra) { output = loutput; output_size = loutput_size; use_extra = luse_extra; - use_tf8 = luse_tf8; #ifdef QCOM2 if (runtime==USE_GPU_RUNTIME) { Runtime = zdl::DlSystem::Runtime_t::GPU; @@ -71,16 +70,14 @@ SNPEModel::SNPEModel(const char *path, float *loutput, size_t loutput_size, int printf("model: %s -> %s\n", input_tensor_name, output_tensor_name); zdl::DlSystem::UserBufferEncodingFloat userBufferEncodingFloat; - zdl::DlSystem::UserBufferEncodingTf8 userBufferEncodingTf8(0, 1./255); // network takes 0-1 zdl::DlSystem::IUserBufferFactory& ubFactory = zdl::SNPE::SNPEFactory::getUserBufferFactory(); - size_t size_of_input = use_tf8 ? sizeof(uint8_t) : sizeof(float); // create input buffer { const auto &inputDims_opt = snpe->getInputDimensions(input_tensor_name); const zdl::DlSystem::TensorShape& bufferShape = *inputDims_opt; std::vector strides(bufferShape.rank()); - strides[strides.size() - 1] = size_of_input; + strides[strides.size() - 1] = sizeof(float); size_t product = 1; for (size_t i = 0; i < bufferShape.rank(); i++) product *= bufferShape[i]; size_t stride = strides[strides.size() - 1]; @@ -89,10 +86,7 @@ SNPEModel::SNPEModel(const char *path, float *loutput, size_t loutput_size, int strides[i-1] = stride; } printf("input product is %lu\n", product); - inputBuffer = ubFactory.createUserBuffer(NULL, - product*size_of_input, - strides, - use_tf8 ? (zdl::DlSystem::UserBufferEncoding*)&userBufferEncodingTf8 : (zdl::DlSystem::UserBufferEncoding*)&userBufferEncodingFloat); + inputBuffer = ubFactory.createUserBuffer(NULL, product*sizeof(float), strides, &userBufferEncodingFloat); inputMap.add(input_tensor_name, inputBuffer.get()); } diff --git a/selfdrive/modeld/runners/snpemodel.h b/selfdrive/modeld/runners/snpemodel.h index ed9d58d1e1..ba51fdced0 100644 --- a/selfdrive/modeld/runners/snpemodel.h +++ b/selfdrive/modeld/runners/snpemodel.h @@ -23,7 +23,7 @@ class SNPEModel : public RunModel { public: - SNPEModel(const char *path, float *loutput, size_t loutput_size, int runtime, bool luse_extra = false, bool use_tf8 = false); + SNPEModel(const char *path, float *loutput, size_t loutput_size, int runtime, bool luse_extra = false); void addRecurrent(float *state, int state_size); void addTrafficConvention(float *state, int state_size); void addCalib(float *state, int state_size); @@ -52,7 +52,6 @@ private: std::unique_ptr inputBuffer; float *input; size_t input_size; - bool use_tf8; // snpe output stuff zdl::DlSystem::UserBufferMap outputMap; diff --git a/selfdrive/monitoring/dmonitoringd.py b/selfdrive/monitoring/dmonitoringd.py index c31e9da43b..9a3196030b 100755 --- a/selfdrive/monitoring/dmonitoringd.py +++ b/selfdrive/monitoring/dmonitoringd.py @@ -18,7 +18,7 @@ def dmonitoringd_thread(sm=None, pm=None): pm = messaging.PubMaster(['driverMonitoringState']) if sm is None: - sm = messaging.SubMaster(['driverStateV2', 'liveCalibration', 'carState', 'controlsState', 'modelV2'], poll=['driverStateV2']) + sm = messaging.SubMaster(['driverState', 'liveCalibration', 'carState', 'controlsState', 'modelV2'], poll=['driverState']) driver_status = DriverStatus(rhd=Params().get_bool("IsRHD")) @@ -34,7 +34,7 @@ def dmonitoringd_thread(sm=None, pm=None): while True: sm.update() - if not sm.updated['driverStateV2']: + if not sm.updated['driverState']: continue # Get interaction @@ -51,7 +51,7 @@ def dmonitoringd_thread(sm=None, pm=None): # Get data from dmonitoringmodeld events = Events() - driver_status.update_states(sm['driverStateV2'], sm['liveCalibration'].rpyCalib, sm['carState'].vEgo, sm['controlsState'].enabled) + driver_status.update_states(sm['driverState'], sm['liveCalibration'].rpyCalib, sm['carState'].vEgo, sm['controlsState'].enabled) # Block engaging after max number of distrations if driver_status.terminal_alert_cnt >= driver_status.settings._MAX_TERMINAL_ALERTS or \ @@ -79,7 +79,6 @@ def dmonitoringd_thread(sm=None, pm=None): "isLowStd": driver_status.pose.low_std, "hiStdCount": driver_status.hi_stds, "isActiveMode": driver_status.active_monitoring_mode, - "isRHD": driver_status.wheel_on_right, } pm.send('driverMonitoringState', dat) diff --git a/selfdrive/monitoring/driver_monitor.py b/selfdrive/monitoring/driver_monitor.py index e7ed175846..662e0d76ce 100644 --- a/selfdrive/monitoring/driver_monitor.py +++ b/selfdrive/monitoring/driver_monitor.py @@ -5,7 +5,6 @@ from common.numpy_fast import interp from common.realtime import DT_DMON from common.filter_simple import FirstOrderFilter from common.stat_live import RunningStatFilter -from common.transformations.camera import tici_d_frame_size EventName = car.CarEvent.EventName @@ -27,29 +26,32 @@ class DRIVER_MONITOR_SETTINGS(): self._DISTRACTED_PROMPT_TIME_TILL_TERMINAL = 6. self._FACE_THRESHOLD = 0.5 + self._PARTIAL_FACE_THRESHOLD = 0.8 self._EYE_THRESHOLD = 0.65 self._SG_THRESHOLD = 0.925 - self._BLINK_THRESHOLD = 0.861 + self._BLINK_THRESHOLD = 0.8 + self._BLINK_THRESHOLD_SLACK = 0.9 + self._BLINK_THRESHOLD_STRICT = self._BLINK_THRESHOLD self._EE_THRESH11 = 0.75 self._EE_THRESH12 = 3.25 self._EE_THRESH21 = 0.01 self._EE_THRESH22 = 0.35 - self._POSE_PITCH_THRESHOLD = 0.3133 - self._POSE_PITCH_THRESHOLD_SLACK = 0.3237 + self._POSE_PITCH_THRESHOLD = 0.3237 + self._POSE_PITCH_THRESHOLD_SLACK = 0.3657 self._POSE_PITCH_THRESHOLD_STRICT = self._POSE_PITCH_THRESHOLD - self._POSE_YAW_THRESHOLD = 0.4020 - self._POSE_YAW_THRESHOLD_SLACK = 0.5042 + self._POSE_YAW_THRESHOLD = 0.3109 + self._POSE_YAW_THRESHOLD_SLACK = 0.4294 self._POSE_YAW_THRESHOLD_STRICT = self._POSE_YAW_THRESHOLD - self._PITCH_NATURAL_OFFSET = 0.029 # initial value before offset is learned - self._YAW_NATURAL_OFFSET = 0.097 # initial value before offset is learned + self._PITCH_NATURAL_OFFSET = 0.057 # initial value before offset is learned + self._YAW_NATURAL_OFFSET = 0.11 # initial value before offset is learned self._PITCH_MAX_OFFSET = 0.124 self._PITCH_MIN_OFFSET = -0.0881 self._YAW_MAX_OFFSET = 0.289 self._YAW_MIN_OFFSET = -0.0246 - self._POSESTD_THRESHOLD = 0.3 + self._POSESTD_THRESHOLD = 0.315 self._HI_STD_FALLBACK_TIME = int(10 / self._DT_DMON) # fall back to wheel touch if model is uncertain for 10s self._DISTRACTED_FILTER_TS = 0.25 # 0.6Hz @@ -57,9 +59,6 @@ class DRIVER_MONITOR_SETTINGS(): self._POSE_OFFSET_MIN_COUNT = int(60 / self._DT_DMON) # valid data counts before calibration completes, 1min cumulative self._POSE_OFFSET_MAX_COUNT = int(360 / self._DT_DMON) # stop deweighting new data after 6 min, aka "short term memory" - self._WHEELPOS_THRESHOLD = 0.5 - self._WHEELPOS_FILTER_MIN_COUNT = int(5 / self._DT_DMON) - self._RECOVERY_FACTOR_MAX = 5. # relative to minus step change self._RECOVERY_FACTOR_MIN = 1.25 # relative to minus step change @@ -67,9 +66,9 @@ class DRIVER_MONITOR_SETTINGS(): self._MAX_TERMINAL_DURATION = int(30 / self._DT_DMON) # not allowed to engage after 30s of terminal alerts -# model output refers to center of undistorted+leveled image -EFL = 598.0 # focal length in K -W, H = tici_d_frame_size # corrected image has same size as raw +# model output refers to center of cropped image, so need to apply the x displacement offset +RESIZED_FOCAL = 320.0 +H, W, FULL_W = 320, 160, 426 class DistractedType: NOT_DISTRACTED = 0 @@ -77,22 +76,22 @@ class DistractedType: DISTRACTED_BLINK = 2 DISTRACTED_E2E = 4 -def face_orientation_from_net(angles_desc, pos_desc, rpy_calib): +def face_orientation_from_net(angles_desc, pos_desc, rpy_calib, is_rhd): # the output of these angles are in device frame # so from driver's perspective, pitch is up and yaw is right pitch_net, yaw_net, roll_net = angles_desc - face_pixel_position = ((pos_desc[0]+0.5)*W, (pos_desc[1]+0.5)*H) - yaw_focal_angle = atan2(face_pixel_position[0] - W//2, EFL) - pitch_focal_angle = atan2(face_pixel_position[1] - H//2, EFL) + face_pixel_position = ((pos_desc[0] + .5)*W - W + FULL_W, (pos_desc[1]+.5)*H) + yaw_focal_angle = atan2(face_pixel_position[0] - FULL_W//2, RESIZED_FOCAL) + pitch_focal_angle = atan2(face_pixel_position[1] - H//2, RESIZED_FOCAL) pitch = pitch_net + pitch_focal_angle yaw = -yaw_net + yaw_focal_angle # no calib for roll pitch -= rpy_calib[1] - yaw -= rpy_calib[2] + yaw -= rpy_calib[2] * (1 - 2 * int(is_rhd)) # lhd -> -=, rhd -> += return roll_net, pitch, yaw class DriverPose(): @@ -113,6 +112,7 @@ class DriverBlink(): def __init__(self): self.left_blink = 0. self.right_blink = 0. + self.cfactor = 1. class DriverStatus(): def __init__(self, rhd=False, settings=DRIVER_MONITOR_SETTINGS()): @@ -120,7 +120,7 @@ class DriverStatus(): self.settings = settings # init driver status - # self.wheelpos_learner = RunningStatFilter() + self.is_rhd_region = rhd self.pose = DriverPose(self.settings._POSE_OFFSET_MAX_COUNT) self.pose_calibrated = False self.blink = DriverBlink() @@ -137,8 +137,8 @@ class DriverStatus(): self.distracted_types = [] self.driver_distracted = False self.driver_distraction_filter = FirstOrderFilter(0., self.settings._DISTRACTED_FILTER_TS, self.settings._DT_DMON) - self.wheel_on_right = rhd self.face_detected = False + self.face_partial = False self.terminal_alert_cnt = 0 self.terminal_time = 0 self.step_change = 0. @@ -197,7 +197,7 @@ class DriverStatus(): yaw_error > self.settings._POSE_YAW_THRESHOLD*self.pose.cfactor_yaw: distracted_types.append(DistractedType.DISTRACTED_POSE) - if (self.blink.left_blink + self.blink.right_blink)*0.5 > self.settings._BLINK_THRESHOLD: + if (self.blink.left_blink + self.blink.right_blink)*0.5 > self.settings._BLINK_THRESHOLD*self.blink.cfactor: distracted_types.append(DistractedType.DISTRACTED_BLINK) if self.ee1_calibrated: @@ -214,7 +214,13 @@ class DriverStatus(): return distracted_types def set_policy(self, model_data, car_speed): + ep = min(model_data.meta.engagedProb, 0.8) / 0.8 # engaged prob bp = model_data.meta.disengagePredictions.brakeDisengageProbs[0] # brake disengage prob in next 2s + # TODO: retune adaptive blink + self.blink.cfactor = interp(ep, [0, 0.5, 1], + [self.settings._BLINK_THRESHOLD_STRICT, + self.settings._BLINK_THRESHOLD, + self.settings._BLINK_THRESHOLD_SLACK]) / self.settings._BLINK_THRESHOLD k1 = max(-0.00156*((car_speed-16)**2)+0.6, 0.2) bp_normal = max(min(bp / k1, 0.5),0) self.pose.cfactor_pitch = interp(bp_normal, [0, 0.5], @@ -225,36 +231,28 @@ class DriverStatus(): self.settings._POSE_YAW_THRESHOLD_STRICT]) / self.settings._POSE_YAW_THRESHOLD def update_states(self, driver_state, cal_rpy, car_speed, op_engaged): - # rhd_pred = driver_state.wheelOnRightProb - # if car_speed > 0.01: - # self.wheelpos_learner.push_and_update(rhd_pred) - # if self.wheelpos_learner.filtered_stat.n > self.settings._WHEELPOS_FILTER_MIN_COUNT: - # self.wheel_on_right = self.wheelpos_learner.filtered_stat.M > self.settings._WHEELPOS_THRESHOLD - # else: - # self.wheel_on_right = rhd_pred > self.settings._WHEELPOS_THRESHOLD - driver_data = driver_state.rightDriverData if self.wheel_on_right else driver_state.leftDriverData - if not all(len(x) > 0 for x in (driver_data.faceOrientation, driver_data.facePosition, - driver_data.faceOrientationStd, driver_data.facePositionStd, - driver_data.readyProb, driver_data.notReadyProb)): + if not all(len(x) > 0 for x in (driver_state.faceOrientation, driver_state.facePosition, + driver_state.faceOrientationStd, driver_state.facePositionStd, + driver_state.readyProb, driver_state.notReadyProb)): return - self.face_detected = driver_data.faceProb > self.settings._FACE_THRESHOLD - self.pose.roll, self.pose.pitch, self.pose.yaw = face_orientation_from_net(driver_data.faceOrientation, driver_data.facePosition, cal_rpy) - if self.wheel_on_right: - self.pose.yaw *= -1 - self.pose.pitch_std = driver_data.faceOrientationStd[0] - self.pose.yaw_std = driver_data.faceOrientationStd[1] + self.face_partial = driver_state.partialFace > self.settings._PARTIAL_FACE_THRESHOLD + self.face_detected = driver_state.faceProb > self.settings._FACE_THRESHOLD or self.face_partial + self.pose.roll, self.pose.pitch, self.pose.yaw = face_orientation_from_net(driver_state.faceOrientation, driver_state.facePosition, cal_rpy, self.is_rhd_region) + self.pose.pitch_std = driver_state.faceOrientationStd[0] + self.pose.yaw_std = driver_state.faceOrientationStd[1] + # self.pose.roll_std = driver_state.faceOrientationStd[2] model_std_max = max(self.pose.pitch_std, self.pose.yaw_std) - self.pose.low_std = model_std_max < self.settings._POSESTD_THRESHOLD - self.blink.left_blink = driver_data.leftBlinkProb * (driver_data.leftEyeProb > self.settings._EYE_THRESHOLD) * (driver_data.sunglassesProb < self.settings._SG_THRESHOLD) - self.blink.right_blink = driver_data.rightBlinkProb * (driver_data.rightEyeProb > self.settings._EYE_THRESHOLD) * (driver_data.sunglassesProb < self.settings._SG_THRESHOLD) - self.eev1 = driver_data.notReadyProb[1] - self.eev2 = driver_data.readyProb[0] + self.pose.low_std = model_std_max < self.settings._POSESTD_THRESHOLD and not self.face_partial + self.blink.left_blink = driver_state.leftBlinkProb * (driver_state.leftEyeProb > self.settings._EYE_THRESHOLD) * (driver_state.sunglassesProb < self.settings._SG_THRESHOLD) + self.blink.right_blink = driver_state.rightBlinkProb * (driver_state.rightEyeProb > self.settings._EYE_THRESHOLD) * (driver_state.sunglassesProb < self.settings._SG_THRESHOLD) + self.eev1 = driver_state.notReadyProb[1] + self.eev2 = driver_state.readyProb[0] self.distracted_types = self._get_distracted_types() self.driver_distracted = (DistractedType.DISTRACTED_POSE in self.distracted_types or DistractedType.DISTRACTED_BLINK in self.distracted_types) and \ - driver_data.faceProb > self.settings._FACE_THRESHOLD and self.pose.low_std + driver_state.faceProb > self.settings._FACE_THRESHOLD and self.pose.low_std self.driver_distraction_filter.update(self.driver_distracted) # update offseter diff --git a/selfdrive/monitoring/test_monitoring.py b/selfdrive/monitoring/test_monitoring.py index 43b5e7747e..a84ed242ba 100755 --- a/selfdrive/monitoring/test_monitoring.py +++ b/selfdrive/monitoring/test_monitoring.py @@ -17,19 +17,19 @@ INVISIBLE_SECONDS_TO_ORANGE = dm_settings._AWARENESS_TIME - dm_settings._AWARENE INVISIBLE_SECONDS_TO_RED = dm_settings._AWARENESS_TIME + 1 def make_msg(face_detected, distracted=False, model_uncertain=False): - ds = log.DriverStateV2.new_message() - ds.leftDriverData.faceOrientation = [0., 0., 0.] - ds.leftDriverData.facePosition = [0., 0.] - ds.leftDriverData.faceProb = 1. * face_detected - ds.leftDriverData.leftEyeProb = 1. - ds.leftDriverData.rightEyeProb = 1. - ds.leftDriverData.leftBlinkProb = 1. * distracted - ds.leftDriverData.rightBlinkProb = 1. * distracted - ds.leftDriverData.faceOrientationStd = [1.*model_uncertain, 1.*model_uncertain, 1.*model_uncertain] - ds.leftDriverData.facePositionStd = [1.*model_uncertain, 1.*model_uncertain] + ds = log.DriverState.new_message() + ds.faceOrientation = [0., 0., 0.] + ds.facePosition = [0., 0.] + ds.faceProb = 1. * face_detected + ds.leftEyeProb = 1. + ds.rightEyeProb = 1. + ds.leftBlinkProb = 1. * distracted + ds.rightBlinkProb = 1. * distracted + ds.faceOrientationStd = [1.*model_uncertain, 1.*model_uncertain, 1.*model_uncertain] + ds.facePositionStd = [1.*model_uncertain, 1.*model_uncertain] # TODO: test both separately when e2e is used - ds.leftDriverData.readyProb = [0., 0., 0., 0.] - ds.leftDriverData.notReadyProb = [0., 0.] + ds.readyProb = [0., 0., 0., 0.] + ds.notReadyProb = [0., 0.] return ds diff --git a/selfdrive/test/process_replay/model_replay.py b/selfdrive/test/process_replay/model_replay.py index 032b504879..b83629c76a 100755 --- a/selfdrive/test/process_replay/model_replay.py +++ b/selfdrive/test/process_replay/model_replay.py @@ -52,7 +52,7 @@ def model_replay(lr, frs): vipc_server.create_buffers(VisionStreamType.VISION_STREAM_WIDE_ROAD, 40, False, *(tici_f_frame_size)) vipc_server.start_listener() - sm = messaging.SubMaster(['modelV2', 'driverStateV2']) + sm = messaging.SubMaster(['modelV2', 'driverState']) pm = messaging.PubMaster(['roadCameraState', 'wideRoadCameraState', 'driverCameraState', 'liveCalibration', 'lateralPlan']) try: @@ -112,7 +112,7 @@ def model_replay(lr, frs): if min(frame_idxs['roadCameraState'], frame_idxs['wideRoadCameraState']) > recv_cnt['modelV2']: recv = "modelV2" elif msg.which() == 'driverCameraState': - recv = "driverStateV2" + recv = "driverState" # wait for a response with Timeout(15, f"timed out waiting for {recv}"): @@ -170,8 +170,8 @@ if __name__ == "__main__": 'logMonoTime', 'modelV2.frameDropPerc', 'modelV2.modelExecutionTime', - 'driverStateV2.modelExecutionTime', - 'driverStateV2.dspExecutionTime' + 'driverState.modelExecutionTime', + 'driverState.dspExecutionTime' ] # TODO this tolerence is absurdly large tolerance = 5e-1 if PC else None diff --git a/selfdrive/test/process_replay/model_replay_ref_commit b/selfdrive/test/process_replay/model_replay_ref_commit index 626d54a8f0..90520f2619 100644 --- a/selfdrive/test/process_replay/model_replay_ref_commit +++ b/selfdrive/test/process_replay/model_replay_ref_commit @@ -1 +1 @@ -1d0979ca59dbc89bc5890656e9501e83f0556d50 +f74ab97371be93fdc28333e5ea12bbb78c3a32d0 diff --git a/selfdrive/test/process_replay/process_replay.py b/selfdrive/test/process_replay/process_replay.py index 89885ef397..1eda9bc7f5 100755 --- a/selfdrive/test/process_replay/process_replay.py +++ b/selfdrive/test/process_replay/process_replay.py @@ -293,7 +293,7 @@ CONFIGS = [ ProcessConfig( proc_name="dmonitoringd", pub_sub={ - "driverStateV2": ["driverMonitoringState"], + "driverState": ["driverMonitoringState"], "liveCalibration": [], "carState": [], "modelV2": [], "controlsState": [], }, ignore=["logMonoTime", "valid"], diff --git a/selfdrive/test/process_replay/ref_commit b/selfdrive/test/process_replay/ref_commit index 2f42570934..298de7999a 100644 --- a/selfdrive/test/process_replay/ref_commit +++ b/selfdrive/test/process_replay/ref_commit @@ -1 +1 @@ -f301bdf52b271c8c4ef0f2bce3be9c8f90037652 +935abbc21282e10572c9324382feba3fee2fe379 \ No newline at end of file diff --git a/selfdrive/test/test_onroad.py b/selfdrive/test/test_onroad.py index 3beeaff3b2..6cf53a046e 100755 --- a/selfdrive/test/test_onroad.py +++ b/selfdrive/test/test_onroad.py @@ -33,7 +33,7 @@ PROCS = { "selfdrive.controls.radard": 4.5, "./_modeld": 4.48, "./boardd": 3.63, - "./_dmonitoringmodeld": 5.0, + "./_dmonitoringmodeld": 10.0, "selfdrive.thermald.thermald": 3.87, "selfdrive.locationd.calibrationd": 2.0, "./_soundd": 1.0, @@ -60,7 +60,7 @@ TIMINGS = { "roadCameraState": [2.5, 0.35], "driverCameraState": [2.5, 0.35], "modelV2": [2.5, 0.35], - "driverStateV2": [2.5, 0.40], + "driverState": [2.5, 0.40], "liveLocationKalman": [2.5, 0.35], "wideRoadCameraState": [1.5, 0.35], } @@ -221,7 +221,7 @@ class TestOnroad(unittest.TestCase): # TODO: this went up when plannerd cpu usage increased, why? cfgs = [ ("modelV2", 0.050, 0.036), - ("driverStateV2", 0.050, 0.026), + ("driverState", 0.050, 0.026), ] for (s, instant_max, avg_max) in cfgs: ts = [getattr(getattr(m, s), "modelExecutionTime") for m in self.lr if m.which() == s] diff --git a/selfdrive/ui/qt/offroad/driverview.cc b/selfdrive/ui/qt/offroad/driverview.cc index 868a97f604..06578b455a 100644 --- a/selfdrive/ui/qt/offroad/driverview.cc +++ b/selfdrive/ui/qt/offroad/driverview.cc @@ -25,7 +25,7 @@ void DriverViewWindow::mouseReleaseEvent(QMouseEvent* e) { emit done(); } -DriverViewScene::DriverViewScene(QWidget* parent) : sm({"driverStateV2"}), QWidget(parent) { +DriverViewScene::DriverViewScene(QWidget* parent) : sm({"driverState"}), QWidget(parent) { face_img = loadPixmap("../assets/img_driver_face.png", {FACE_IMG_SIZE, FACE_IMG_SIZE}); } @@ -57,36 +57,43 @@ void DriverViewScene::paintEvent(QPaintEvent* event) { return; } - cereal::DriverStateV2::Reader driver_state = sm["driverStateV2"].getDriverStateV2(); - cereal::DriverStateV2::DriverData::Reader driver_data; + const int width = 4 * height() / 3; + const QRect rect2 = {rect().center().x() - width / 2, rect().top(), width, rect().height()}; + const QRect valid_rect = {is_rhd ? rect2.right() - rect2.height() / 2 : rect2.left(), rect2.top(), rect2.height() / 2, rect2.height()}; - // is_rhd = driver_state.getWheelOnRightProb() > 0.5; - driver_data = is_rhd ? driver_state.getRightDriverData() : driver_state.getLeftDriverData(); + // blackout + const QColor bg(0, 0, 0, 140); + const QRect& blackout_rect = rect(); + p.fillRect(blackout_rect.adjusted(0, 0, valid_rect.left() - blackout_rect.right(), 0), bg); + p.fillRect(blackout_rect.adjusted(valid_rect.right() - blackout_rect.left(), 0, 0, 0), bg); + p.fillRect(blackout_rect.adjusted(valid_rect.left()-blackout_rect.left()+1, 0, valid_rect.right()-blackout_rect.right()-1, -valid_rect.height()*7/10), bg); // top dz - bool face_detected = driver_data.getFaceProb() > 0.5; + // face bounding box + cereal::DriverState::Reader driver_state = sm["driverState"].getDriverState(); + bool face_detected = driver_state.getFaceProb() > 0.5; if (face_detected) { - auto fxy_list = driver_data.getFacePosition(); - auto std_list = driver_data.getFaceOrientationStd(); + auto fxy_list = driver_state.getFacePosition(); + auto std_list = driver_state.getFaceOrientationStd(); float face_x = fxy_list[0]; float face_y = fxy_list[1]; float face_std = std::max(std_list[0], std_list[1]); float alpha = 0.7; - if (face_std > 0.15) { - alpha = std::max(0.7 - (face_std-0.15)*3.5, 0.0); + if (face_std > 0.08) { + alpha = std::max(0.7 - (face_std-0.08)*7, 0.0); } - const int box_size = 220; - // use approx instead of distort_points - int fbox_x = 1080.0 - 1714.0 * face_x; - int fbox_y = -135.0 + (504.0 + std::abs(face_x)*112.0) + (1205.0 - std::abs(face_x)*724.0) * face_y; + const int box_size = 0.6 * rect2.height() / 2; + const float rhd_offset = 0.05; // lhd is shifted, so rhd is not mirrored + int fbox_x = valid_rect.center().x() + (is_rhd ? (face_x + rhd_offset) : -face_x) * valid_rect.width(); + int fbox_y = valid_rect.center().y() + face_y * valid_rect.height(); p.setPen(QPen(QColor(255, 255, 255, alpha * 255), 10)); p.drawRoundedRect(fbox_x - box_size / 2, fbox_y - box_size / 2, box_size, box_size, 35.0, 35.0); } // icon - const int img_offset = 60; - const int img_x = rect().left() + img_offset; - const int img_y = rect().bottom() - FACE_IMG_SIZE - img_offset; - p.setOpacity(face_detected ? 1.0 : 0.2); + const int img_offset = 30; + const int img_x = is_rhd ? rect2.right() - FACE_IMG_SIZE - img_offset : rect2.left() + img_offset; + const int img_y = rect2.bottom() - FACE_IMG_SIZE - img_offset; + p.setOpacity(face_detected ? 1.0 : 0.3); p.drawPixmap(img_x, img_y, face_img); } diff --git a/selfdrive/ui/qt/widgets/cameraview.cc b/selfdrive/ui/qt/widgets/cameraview.cc index 0a3b9762e5..f16e8e4e0d 100644 --- a/selfdrive/ui/qt/widgets/cameraview.cc +++ b/selfdrive/ui/qt/widgets/cameraview.cc @@ -54,15 +54,16 @@ const mat4 device_transform = {{ }}; mat4 get_driver_view_transform(int screen_width, int screen_height, int stream_width, int stream_height) { - const float driver_view_ratio = 2.0; - const float yscale = stream_height * driver_view_ratio / stream_width; + const float driver_view_ratio = 1.333; + const float yscale = stream_height * driver_view_ratio / tici_dm_crop::width; const float xscale = yscale*screen_height/screen_width*stream_width/stream_height; mat4 transform = (mat4){{ - xscale, 0.0, 0.0, 0.0, - 0.0, yscale, 0.0, 0.0, + xscale, 0.0, 0.0, xscale*tici_dm_crop::x_offset/stream_width*2, + 0.0, yscale, 0.0, yscale*tici_dm_crop::y_offset/stream_height*2, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, }}; + return transform; }