diff --git a/selfdrive/car/gm/interface.py b/selfdrive/car/gm/interface.py index 9a165cf067..104cb8fbd8 100755 --- a/selfdrive/car/gm/interface.py +++ b/selfdrive/car/gm/interface.py @@ -1,5 +1,4 @@ #!/usr/bin/env python3 -import numpy as np from cereal import car from math import fabs from panda import Panda @@ -59,23 +58,23 @@ class CarInterface(CarInterfaceBase): # TODO: # 1. Learn the correction factors from data # 2. Generalize the logic to other GM torque control platforms - steer_break_pts = np.array([-1.0, -0.9, -0.75, -0.5, 0.0, 0.5, 0.75, 0.9, 1.0]) - steer_lataccel_factors = np.array([1.5, 1.15, 1.02, 1.0, 1.0, 1.0, 1.02, 1.15, 1.5]) - steer_correction_factor = np.interp( + steer_break_pts = [-1.0, -0.9, -0.75, -0.5, 0.0, 0.5, 0.75, 0.9, 1.0] + steer_lataccel_factors = [1.5, 1.15, 1.02, 1.0, 1.0, 1.0, 1.02, 1.15, 1.5] + steer_correction_factor = interp( steer_torque, steer_break_pts, steer_lataccel_factors ) - vego_break_pts = np.array([0.0, 10.0, 15.0, 20.0, 100.0]) - vego_lataccel_factors = np.array([1.5, 1.5, 1.25, 1.0, 1.0]) - vego_correction_factor = np.interp( + vego_break_pts = [0.0, 10.0, 15.0, 20.0, 100.0] + vego_lataccel_factors = [1.5, 1.5, 1.25, 1.0, 1.0] + vego_correction_factor = interp( vego, vego_break_pts, vego_lataccel_factors, ) - return float((steer_torque + friction) / (steer_correction_factor * vego_correction_factor)) + return (steer_torque + friction) / (steer_correction_factor * vego_correction_factor) def torque_from_lateral_accel(self) -> TorqueFromLateralAccelCallbackType: if self.CP.carFingerprint == CAR.BOLT_EUV: