paramsd: refactor VehicleParamsLearner (#34955)

* Refactor ParamsLearner

* Make it VehicleParamsLearner

* Fix

* Use capnp serialization instead of json

* Fix speed

* Remove redundant comments

* Monitor observed_roll

* Just use init_state

* Comment

* Improve reset

* Set globals api

* Typing for return value

* Redo reset messaging

* Remove usages of math

* Fix process_replay custom_params

* Type ignores for rednose fields

* Remove import

* Reset previous values too

* Update ref_commit

* Revert it

* Bring it back

* Remove more

* Add migration for cached params
pull/34965/head
Kacper Rączy 4 weeks ago committed by GitHub
parent 447f279f83
commit 75cc300480
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
  1. 25
      selfdrive/locationd/models/car_kf.py
  2. 333
      selfdrive/locationd/paramsd.py
  3. 5
      selfdrive/test/process_replay/process_replay.py
  4. 2
      selfdrive/test/process_replay/ref_commit

@ -160,19 +160,18 @@ class CarKalman(KalmanFilter):
gen_code(generated_dir, name, f_sym, dt, state_sym, obs_eqs, dim_state, dim_state, global_vars=global_vars)
def __init__(self, generated_dir, steer_ratio=15, stiffness_factor=1, angle_offset=0, P_initial=None):
dim_state = self.initial_x.shape[0]
dim_state_err = self.P_initial.shape[0]
x_init = self.initial_x
x_init[States.STEER_RATIO] = steer_ratio
x_init[States.STIFFNESS] = stiffness_factor
x_init[States.ANGLE_OFFSET] = angle_offset
if P_initial is not None:
self.P_initial = P_initial
# init filter
self.filter = EKF_sym_pyx(generated_dir, self.name, self.Q, self.initial_x, self.P_initial,
dim_state, dim_state_err, global_vars=self.global_vars, logger=cloudlog)
def __init__(self, generated_dir):
dim_state, dim_state_err = CarKalman.initial_x.shape[0], CarKalman.P_initial.shape[0]
self.filter = EKF_sym_pyx(generated_dir, CarKalman.name, CarKalman.Q, CarKalman.initial_x, CarKalman.P_initial,
dim_state, dim_state_err, global_vars=CarKalman.global_vars, logger=cloudlog)
def set_globals(self, mass, rotational_inertia, center_to_front, center_to_rear, stiffness_front, stiffness_rear):
self.filter.set_global("mass", mass)
self.filter.set_global("rotational_inertia", rotational_inertia)
self.filter.set_global("center_to_front", center_to_front)
self.filter.set_global("center_to_rear", center_to_rear)
self.filter.set_global("stiffness_front", stiffness_front)
self.filter.set_global("stiffness_rear", stiffness_rear)
if __name__ == "__main__":

@ -1,8 +1,8 @@
#!/usr/bin/env python3
import os
import math
import json
import numpy as np
import capnp
import cereal.messaging as messaging
from cereal import car, log
@ -13,12 +13,11 @@ from openpilot.selfdrive.locationd.models.constants import GENERATED_DIR
from openpilot.selfdrive.locationd.helpers import PoseCalibrator, Pose
from openpilot.common.swaglog import cloudlog
MAX_ANGLE_OFFSET_DELTA = 20 * DT_MDL # Max 20 deg/s
ROLL_MAX_DELTA = math.radians(20.0) * DT_MDL # 20deg in 1 second is well within curvature limits
ROLL_MIN, ROLL_MAX = math.radians(-10), math.radians(10)
ROLL_LOWERED_MAX = math.radians(8)
ROLL_STD_MAX = math.radians(1.5)
ROLL_MAX_DELTA = np.radians(20.0) * DT_MDL # 20deg in 1 second is well within curvature limits
ROLL_MIN, ROLL_MAX = np.radians(-10), np.radians(10)
ROLL_LOWERED_MAX = np.radians(8)
ROLL_STD_MAX = np.radians(1.5)
LATERAL_ACC_SENSOR_THRESHOLD = 4.0
OFFSET_MAX = 10.0
OFFSET_LOWERED_MAX = 8.0
@ -26,40 +25,58 @@ MIN_ACTIVE_SPEED = 1.0
LOW_ACTIVE_SPEED = 10.0
class ParamsLearner:
def __init__(self, CP, steer_ratio, stiffness_factor, angle_offset, P_initial=None):
self.kf = CarKalman(GENERATED_DIR, steer_ratio, stiffness_factor, angle_offset, P_initial)
class VehicleParamsLearner:
def __init__(self, CP: car.CarParams, steer_ratio: float, stiffness_factor: float, angle_offset: float, P_initial: np.ndarray | None = None):
self.kf = CarKalman(GENERATED_DIR)
self.x_initial = CarKalman.initial_x.copy()
self.x_initial[States.STEER_RATIO] = steer_ratio
self.x_initial[States.STIFFNESS] = stiffness_factor
self.x_initial[States.ANGLE_OFFSET] = angle_offset
self.P_initial = P_initial or CarKalman.P_initial
self.kf.filter.set_global("mass", CP.mass)
self.kf.filter.set_global("rotational_inertia", CP.rotationalInertia)
self.kf.filter.set_global("center_to_front", CP.centerToFront)
self.kf.filter.set_global("center_to_rear", CP.wheelbase - CP.centerToFront)
self.kf.filter.set_global("stiffness_front", CP.tireStiffnessFront)
self.kf.filter.set_global("stiffness_rear", CP.tireStiffnessRear)
self.kf.set_globals(
mass=CP.mass,
rotational_inertia=CP.rotationalInertia,
center_to_front=CP.centerToFront,
center_to_rear=CP.wheelbase - CP.centerToFront,
stiffness_front=CP.tireStiffnessFront,
stiffness_rear=CP.tireStiffnessRear
)
self.active = False
self.min_sr, self.max_sr = 0.5 * CP.steerRatio, 2.0 * CP.steerRatio
self.calibrator = PoseCalibrator()
self.speed = 0.0
self.yaw_rate = 0.0
self.yaw_rate_std = 0.0
self.roll = 0.0
self.steering_angle = 0.0
self.observed_speed = 0.0
self.observed_yaw_rate = 0.0
self.observed_roll = 0.0
self.avg_offset_valid = True
self.total_offset_valid = True
self.roll_valid = True
self.reset(None)
def handle_log(self, t, which, msg):
def reset(self, t: float | None):
self.kf.init_state(self.x_initial, covs=self.P_initial, filter_time=t)
self.angle_offset, self.roll, self.active = np.degrees(self.x_initial[States.ANGLE_OFFSET].item()), 0.0, False
self.avg_angle_offset = self.angle_offset
def handle_log(self, t: float, which: str, msg: capnp._DynamicStructReader):
if which == 'livePose':
device_pose = Pose.from_live_pose(msg)
calibrated_pose = self.calibrator.build_calibrated_pose(device_pose)
yaw_rate, yaw_rate_std = calibrated_pose.angular_velocity.z, calibrated_pose.angular_velocity.z_std
yaw_rate_valid = msg.angularVelocityDevice.valid
yaw_rate_valid = yaw_rate_valid and 0 < self.yaw_rate_std < 10 # rad/s
yaw_rate_valid = yaw_rate_valid and abs(self.yaw_rate) < 1 # rad/s
if yaw_rate_valid:
self.yaw_rate, self.yaw_rate_std = calibrated_pose.angular_velocity.z, calibrated_pose.angular_velocity.z_std
else:
yaw_rate_valid = yaw_rate_valid and 0 < yaw_rate_std < 10 # rad/s
yaw_rate_valid = yaw_rate_valid and abs(yaw_rate) < 1 # rad/s
if not yaw_rate_valid:
# This is done to bound the yaw rate estimate when localizer values are invalid or calibrating
self.yaw_rate, self.yaw_rate_std = 0.0, np.radians(10.0)
yaw_rate, yaw_rate_std = 0.0, np.radians(10.0)
self.observed_yaw_rate = yaw_rate
localizer_roll, localizer_roll_std = device_pose.orientation.x, device_pose.orientation.x_std
localizer_roll_std = np.radians(1) if np.isnan(localizer_roll_std) else localizer_roll_std
@ -72,18 +89,18 @@ class ParamsLearner:
# This is done to bound the road roll estimate when localizer values are invalid
roll = 0.0
roll_std = np.radians(10.0)
self.roll = np.clip(roll, self.roll - ROLL_MAX_DELTA, self.roll + ROLL_MAX_DELTA)
self.observed_roll = np.clip(roll, self.observed_roll - ROLL_MAX_DELTA, self.observed_roll + ROLL_MAX_DELTA)
if self.active:
if msg.posenetOK:
self.kf.predict_and_observe(t,
ObservationKind.ROAD_FRAME_YAW_RATE,
np.array([[-self.yaw_rate]]),
np.array([np.atleast_2d(self.yaw_rate_std**2)]))
np.array([[-self.observed_yaw_rate]]),
np.array([np.atleast_2d(yaw_rate_std**2)]))
self.kf.predict_and_observe(t,
ObservationKind.ROAD_ROLL,
np.array([[self.roll]]),
np.array([[self.observed_roll]]),
np.array([np.atleast_2d(roll_std**2)]))
self.kf.predict_and_observe(t, ObservationKind.ANGLE_OFFSET_FAST, np.array([[0]]))
@ -99,20 +116,79 @@ class ParamsLearner:
self.calibrator.feed_live_calib(msg)
elif which == 'carState':
self.steering_angle = msg.steeringAngleDeg
self.speed = msg.vEgo
steering_angle = msg.steeringAngleDeg
in_linear_region = abs(self.steering_angle) < 45
self.active = self.speed > MIN_ACTIVE_SPEED and in_linear_region
in_linear_region = abs(steering_angle) < 45
self.observed_speed = msg.vEgo
self.active = self.observed_speed > MIN_ACTIVE_SPEED and in_linear_region
if self.active:
self.kf.predict_and_observe(t, ObservationKind.STEER_ANGLE, np.array([[math.radians(msg.steeringAngleDeg)]]))
self.kf.predict_and_observe(t, ObservationKind.ROAD_FRAME_X_SPEED, np.array([[self.speed]]))
self.kf.predict_and_observe(t, ObservationKind.STEER_ANGLE, np.array([[np.radians(steering_angle)]]))
self.kf.predict_and_observe(t, ObservationKind.ROAD_FRAME_X_SPEED, np.array([[self.observed_speed]]))
if not self.active:
# Reset time when stopped so uncertainty doesn't grow
self.kf.filter.set_filter_time(t)
self.kf.filter.reset_rewind()
self.kf.filter.set_filter_time(t) # type: ignore
self.kf.filter.reset_rewind() # type: ignore
def get_msg(self, valid: bool, debug: bool = False) -> capnp._DynamicStructBuilder:
x = self.kf.x
P = np.sqrt(self.kf.P.diagonal())
if not np.all(np.isfinite(x)):
cloudlog.error("NaN in liveParameters estimate. Resetting to default values")
self.reset(self.kf.t)
x = self.kf.x
self.avg_angle_offset = np.clip(np.degrees(x[States.ANGLE_OFFSET].item()),
self.avg_angle_offset - MAX_ANGLE_OFFSET_DELTA, self.avg_angle_offset + MAX_ANGLE_OFFSET_DELTA)
self.angle_offset = np.clip(np.degrees(x[States.ANGLE_OFFSET].item() + x[States.ANGLE_OFFSET_FAST].item()),
self.angle_offset - MAX_ANGLE_OFFSET_DELTA, self.angle_offset + MAX_ANGLE_OFFSET_DELTA)
self.roll = np.clip(float(x[States.ROAD_ROLL].item()), self.roll - ROLL_MAX_DELTA, self.roll + ROLL_MAX_DELTA)
roll_std = float(P[States.ROAD_ROLL].item())
if self.active and self.observed_speed > LOW_ACTIVE_SPEED:
# Account for the opposite signs of the yaw rates
# At low speeds, bumping into a curb can cause the yaw rate to be very high
sensors_valid = bool(abs(self.observed_speed * (x[States.YAW_RATE].item() + self.observed_yaw_rate)) < LATERAL_ACC_SENSOR_THRESHOLD)
else:
sensors_valid = True
self.avg_offset_valid = check_valid_with_hysteresis(self.avg_offset_valid, self.avg_angle_offset, OFFSET_MAX, OFFSET_LOWERED_MAX)
self.total_offset_valid = check_valid_with_hysteresis(self.total_offset_valid, self.angle_offset, OFFSET_MAX, OFFSET_LOWERED_MAX)
self.roll_valid = check_valid_with_hysteresis(self.roll_valid, self.roll, ROLL_MAX, ROLL_LOWERED_MAX)
msg = messaging.new_message('liveParameters')
msg.valid = valid
liveParameters = msg.liveParameters
liveParameters.posenetValid = True
liveParameters.sensorValid = sensors_valid
liveParameters.steerRatio = float(x[States.STEER_RATIO].item())
liveParameters.stiffnessFactor = float(x[States.STIFFNESS].item())
liveParameters.roll = float(self.roll)
liveParameters.angleOffsetAverageDeg = float(self.avg_angle_offset)
liveParameters.angleOffsetDeg = float(self.angle_offset)
liveParameters.steerRatioValid = self.min_sr <= liveParameters.steerRatio <= self.max_sr
liveParameters.stiffnessFactorValid = 0.2 <= liveParameters.stiffnessFactor <= 5.0
liveParameters.angleOffsetAverageValid = bool(self.avg_offset_valid)
liveParameters.angleOffsetValid = bool(self.total_offset_valid)
liveParameters.valid = all((
liveParameters.angleOffsetAverageValid,
liveParameters.angleOffsetValid ,
self.roll_valid,
roll_std < ROLL_STD_MAX,
liveParameters.stiffnessFactorValid,
liveParameters.steerRatioValid,
))
liveParameters.steerRatioStd = float(P[States.STEER_RATIO].item())
liveParameters.stiffnessFactorStd = float(P[States.STIFFNESS].item())
liveParameters.angleOffsetAverageStd = float(P[States.ANGLE_OFFSET].item())
liveParameters.angleOffsetFastStd = float(P[States.ANGLE_OFFSET_FAST].item())
if debug:
liveParameters.debugFilterState = log.LiveParametersData.FilterState.new_message()
liveParameters.debugFilterState.value = x.tolist()
liveParameters.debugFilterState.std = P.tolist()
return msg
def check_valid_with_hysteresis(current_valid: bool, val: float, threshold: float, lowered_threshold: float):
@ -123,69 +199,81 @@ def check_valid_with_hysteresis(current_valid: bool, val: float, threshold: floa
return current_valid
def main():
config_realtime_process([0, 1, 2, 3], 5)
# TODO: Remove this function after few releases (added in 0.9.9)
def migrate_cached_vehicle_params_if_needed(params_reader: Params):
last_parameters_data = params_reader.get("LiveParameters")
if last_parameters_data is None:
return
DEBUG = bool(int(os.getenv("DEBUG", "0")))
REPLAY = bool(int(os.getenv("REPLAY", "0")))
pm = messaging.PubMaster(['liveParameters'])
sm = messaging.SubMaster(['livePose', 'liveCalibration', 'carState'], poll='livePose')
try:
last_parameters_dict = json.loads(last_parameters_data)
last_parameters_msg = messaging.new_message('liveParameters')
last_parameters_msg.liveParameters.valid = True
last_parameters_msg.liveParameters.steerRatio = last_parameters_dict['steerRatio']
last_parameters_msg.liveParameters.stiffnessFactor = last_parameters_dict['stiffnessFactor']
last_parameters_msg.liveParameters.angleOffsetAverageDeg = last_parameters_dict['angleOffsetAverageDeg']
params_reader.put("LiveParameters", last_parameters_msg.to_bytes())
except (json.JSONDecodeError, KeyError):
pass
params_reader = Params()
# wait for stats about the car to come in from controls
cloudlog.info("paramsd is waiting for CarParams")
CP = messaging.log_from_bytes(params_reader.get("CarParams", block=True), car.CarParams)
cloudlog.info("paramsd got CarParams")
min_sr, max_sr = 0.5 * CP.steerRatio, 2.0 * CP.steerRatio
def retrieve_initial_vehicle_params(params_reader: Params, CP: car.CarParams, replay: bool, debug: bool):
last_parameters_data = params_reader.get("LiveParameters")
last_carparams_data = params_reader.get("CarParamsPrevRoute")
params = params_reader.get("LiveParameters")
steer_ratio, stiffness_factor, angle_offset_deg, p_initial = CP.steerRatio, 1.0, 0.0, None
retrieve_success = False
if last_parameters_data is not None and last_carparams_data is not None:
try:
with log.Event.from_bytes(last_parameters_data) as last_lp_msg, car.CarParams.from_bytes(last_carparams_data) as last_CP:
lp = last_lp_msg.liveParameters
# Check if car model matches
if params is not None:
params = json.loads(params)
if params.get('carFingerprint', None) != CP.carFingerprint:
cloudlog.info("Parameter learner found parameters for wrong car.")
params = None
if last_CP.carFingerprint != CP.carFingerprint:
raise Exception("Car model mismatch")
# Check if starting values are sane
if params is not None:
try:
steer_ratio_sane = min_sr <= params['steerRatio'] <= max_sr
min_sr, max_sr = 0.5 * CP.steerRatio, 2.0 * CP.steerRatio
steer_ratio_sane = min_sr <= lp.steerRatio <= max_sr
if not steer_ratio_sane:
cloudlog.info(f"Invalid starting values found {params}")
params = None
raise Exception(f"Invalid starting values found {lp}")
initial_filter_std = np.array(lp.debugFilterState.std)
if debug and len(initial_filter_std) != 0:
p_initial = initial_filter_std
steer_ratio, stiffness_factor, angle_offset_deg = lp.steerRatio, lp.stiffnessFactor, lp.angleOffsetAverageDeg
retrieve_success = True
except Exception as e:
cloudlog.info(f"Error reading params {params}: {str(e)}")
params = None
# TODO: cache the params with the capnp struct
if params is None:
params = {
'carFingerprint': CP.carFingerprint,
'steerRatio': CP.steerRatio,
'stiffnessFactor': 1.0,
'angleOffsetAverageDeg': 0.0,
}
cloudlog.info("Parameter learner resetting to default values")
cloudlog.error(f"Failed to retrieve initial values: {e}")
if not REPLAY:
if not replay:
# When driving in wet conditions the stiffness can go down, and then be too low on the next drive
# Without a way to detect this we have to reset the stiffness every drive
params['stiffnessFactor'] = 1.0
stiffness_factor = 1.0
pInitial = None
if DEBUG:
pInitial = np.array(params['debugFilterState']['std']) if 'debugFilterState' in params else None
if not retrieve_success:
cloudlog.info("Parameter learner resetting to default values")
learner = ParamsLearner(CP, params['steerRatio'], params['stiffnessFactor'], math.radians(params['angleOffsetAverageDeg']), pInitial)
angle_offset_average = params['angleOffsetAverageDeg']
angle_offset = angle_offset_average
roll = 0.0
avg_offset_valid = True
total_offset_valid = True
roll_valid = True
return steer_ratio, stiffness_factor, angle_offset_deg, p_initial
def main():
config_realtime_process([0, 1, 2, 3], 5)
DEBUG = bool(int(os.getenv("DEBUG", "0")))
REPLAY = bool(int(os.getenv("REPLAY", "0")))
pm = messaging.PubMaster(['liveParameters'])
sm = messaging.SubMaster(['livePose', 'liveCalibration', 'carState'], poll='livePose')
params_reader = Params()
CP = messaging.log_from_bytes(params_reader.get("CarParams", block=True), car.CarParams)
migrate_cached_vehicle_params_if_needed(params_reader)
steer_ratio, stiffness_factor, angle_offset_deg, pInitial = retrieve_initial_vehicle_params(params_reader, CP, REPLAY, DEBUG)
learner = VehicleParamsLearner(CP, steer_ratio, stiffness_factor, np.radians(angle_offset_deg), pInitial)
while True:
sm.update()
@ -196,72 +284,13 @@ def main():
learner.handle_log(t, which, sm[which])
if sm.updated['livePose']:
x = learner.kf.x
P = np.sqrt(learner.kf.P.diagonal())
if not all(map(math.isfinite, x)):
cloudlog.error("NaN in liveParameters estimate. Resetting to default values")
learner = ParamsLearner(CP, CP.steerRatio, 1.0, 0.0)
x = learner.kf.x
angle_offset_average = np.clip(math.degrees(x[States.ANGLE_OFFSET].item()),
angle_offset_average - MAX_ANGLE_OFFSET_DELTA, angle_offset_average + MAX_ANGLE_OFFSET_DELTA)
angle_offset = np.clip(math.degrees(x[States.ANGLE_OFFSET].item() + x[States.ANGLE_OFFSET_FAST].item()),
angle_offset - MAX_ANGLE_OFFSET_DELTA, angle_offset + MAX_ANGLE_OFFSET_DELTA)
roll = np.clip(float(x[States.ROAD_ROLL].item()), roll - ROLL_MAX_DELTA, roll + ROLL_MAX_DELTA)
roll_std = float(P[States.ROAD_ROLL].item())
if learner.active and learner.speed > LOW_ACTIVE_SPEED:
# Account for the opposite signs of the yaw rates
# At low speeds, bumping into a curb can cause the yaw rate to be very high
sensors_valid = bool(abs(learner.speed * (x[States.YAW_RATE].item() + learner.yaw_rate)) < LATERAL_ACC_SENSOR_THRESHOLD)
else:
sensors_valid = True
avg_offset_valid = check_valid_with_hysteresis(avg_offset_valid, angle_offset_average, OFFSET_MAX, OFFSET_LOWERED_MAX)
total_offset_valid = check_valid_with_hysteresis(total_offset_valid, angle_offset, OFFSET_MAX, OFFSET_LOWERED_MAX)
roll_valid = check_valid_with_hysteresis(roll_valid, roll, ROLL_MAX, ROLL_LOWERED_MAX)
msg = messaging.new_message('liveParameters')
liveParameters = msg.liveParameters
liveParameters.posenetValid = True
liveParameters.sensorValid = sensors_valid
liveParameters.steerRatio = float(x[States.STEER_RATIO].item())
liveParameters.stiffnessFactor = float(x[States.STIFFNESS].item())
liveParameters.roll = float(roll)
liveParameters.angleOffsetAverageDeg = float(angle_offset_average)
liveParameters.angleOffsetDeg = float(angle_offset)
liveParameters.steerRatioValid = min_sr <= liveParameters.steerRatio <= max_sr
liveParameters.stiffnessFactorValid = 0.2 <= liveParameters.stiffnessFactor <= 5.0
liveParameters.angleOffsetAverageValid = bool(avg_offset_valid)
liveParameters.angleOffsetValid = bool(total_offset_valid)
liveParameters.valid = all((
liveParameters.angleOffsetAverageValid,
liveParameters.angleOffsetValid ,
roll_valid,
roll_std < ROLL_STD_MAX,
liveParameters.stiffnessFactorValid,
liveParameters.steerRatioValid,
))
liveParameters.steerRatioStd = float(P[States.STEER_RATIO].item())
liveParameters.stiffnessFactorStd = float(P[States.STIFFNESS].item())
liveParameters.angleOffsetAverageStd = float(P[States.ANGLE_OFFSET].item())
liveParameters.angleOffsetFastStd = float(P[States.ANGLE_OFFSET_FAST].item())
if DEBUG:
liveParameters.debugFilterState = log.LiveParametersData.FilterState.new_message()
liveParameters.debugFilterState.value = x.tolist()
liveParameters.debugFilterState.std = P.tolist()
msg.valid = sm.all_checks()
msg = learner.get_msg(sm.all_checks(), debug=DEBUG)
msg_dat = msg.to_bytes()
if sm.frame % 1200 == 0: # once a minute
params = {
'carFingerprint': CP.carFingerprint,
'steerRatio': liveParameters.steerRatio,
'stiffnessFactor': liveParameters.stiffnessFactor,
'angleOffsetAverageDeg': liveParameters.angleOffsetAverageDeg,
}
params_reader.put_nonblocking("LiveParameters", json.dumps(params))
pm.send('liveParameters', msg)
params_reader.put_nonblocking("LiveParameters", msg_dat)
pm.send('liveParameters', msg_dat)
if __name__ == "__main__":

@ -2,7 +2,6 @@
import os
import time
import copy
import json
import heapq
import signal
from collections import Counter, OrderedDict
@ -628,9 +627,7 @@ def get_custom_params_from_lr(lr: LogIterable, initial_state: str = "first") ->
if len(live_calibration) > 0:
custom_params["CalibrationParams"] = live_calibration[msg_index].as_builder().to_bytes()
if len(live_parameters) > 0:
lp_dict = live_parameters[msg_index].to_dict()
lp_dict["carFingerprint"] = CP.carFingerprint
custom_params["LiveParameters"] = json.dumps(lp_dict)
custom_params["LiveParameters"] = live_parameters[msg_index].as_builder().to_bytes()
if len(live_torque_parameters) > 0:
custom_params["LiveTorqueParameters"] = live_torque_parameters[msg_index].as_builder().to_bytes()

@ -1 +1 @@
1904f49bcc97370a842aeee1f831e9ced5a6cad6
887623a18d82088dc5ed9ecdced55eb0d3f718b1
Loading…
Cancel
Save