diff --git a/selfdrive/modeld/parse_model_outputs.py b/selfdrive/modeld/parse_model_outputs.py index 783572d436..0bdab7b0b1 100644 --- a/selfdrive/modeld/parse_model_outputs.py +++ b/selfdrive/modeld/parse_model_outputs.py @@ -88,12 +88,6 @@ class Parser: self.parse_mdn('pose', outs, in_N=0, out_N=0, out_shape=(ModelConstants.POSE_WIDTH,)) self.parse_mdn('wide_from_device_euler', outs, in_N=0, out_N=0, out_shape=(ModelConstants.WIDE_FROM_DEVICE_WIDTH,)) self.parse_mdn('road_transform', outs, in_N=0, out_N=0, out_shape=(ModelConstants.POSE_WIDTH,)) - self.parse_mdn('lane_lines', outs, in_N=0, out_N=0, out_shape=(ModelConstants.NUM_LANE_LINES,ModelConstants.IDX_N,ModelConstants.LANE_LINES_WIDTH)) - self.parse_mdn('road_edges', outs, in_N=0, out_N=0, out_shape=(ModelConstants.NUM_ROAD_EDGES,ModelConstants.IDX_N,ModelConstants.LANE_LINES_WIDTH)) - self.parse_mdn('lead', outs, in_N=ModelConstants.LEAD_MHP_N, out_N=ModelConstants.LEAD_MHP_SELECTION, - out_shape=(ModelConstants.LEAD_TRAJ_LEN,ModelConstants.LEAD_WIDTH)) - for k in ['lead_prob', 'lane_lines_prob']: - self.parse_binary_crossentropy(k, outs) self.parse_categorical_crossentropy('desire_pred', outs, out_shape=(ModelConstants.DESIRE_PRED_LEN,ModelConstants.DESIRE_PRED_WIDTH)) self.parse_binary_crossentropy('meta', outs) return outs @@ -108,6 +102,15 @@ class Parser: self.parse_categorical_crossentropy('desire_state', outs, out_shape=(ModelConstants.DESIRE_PRED_WIDTH,)) return outs + def parse_misc_outputs(self, outs: dict[str, np.ndarray]) -> dict[str, np.ndarray]: + self.parse_mdn('lane_lines', outs, in_N=0, out_N=0, out_shape=(ModelConstants.NUM_LANE_LINES,ModelConstants.IDX_N,ModelConstants.LANE_LINES_WIDTH)) + self.parse_mdn('road_edges', outs, in_N=0, out_N=0, out_shape=(ModelConstants.NUM_ROAD_EDGES,ModelConstants.IDX_N,ModelConstants.LANE_LINES_WIDTH)) + self.parse_mdn('lead', outs, in_N=ModelConstants.LEAD_MHP_N, out_N=ModelConstants.LEAD_MHP_SELECTION, + out_shape=(ModelConstants.LEAD_TRAJ_LEN,ModelConstants.LEAD_WIDTH)) + for k in ['lead_prob', 'lane_lines_prob']: + self.parse_binary_crossentropy(k, outs) + return outs + def parse_outputs(self, outs: dict[str, np.ndarray]) -> dict[str, np.ndarray]: outs = self.parse_vision_outputs(outs) outs = self.parse_policy_outputs(outs)