radard: cleanup and refactor (#29071)

Re-structure + add typing
old-commit-hash: 0faab606b0
beeps
Kacper Rączy 2 years ago committed by GitHub
parent a069514c36
commit 894a369398
  1. 202
      selfdrive/controls/radard.py

@ -1,10 +1,11 @@
#!/usr/bin/env python3
import importlib
import math
from collections import defaultdict, deque
from collections import deque
from typing import Optional, Dict, Any
import cereal.messaging as messaging
from cereal import car
import capnp
from cereal import messaging, log, car
from common.numpy_fast import interp
from common.params import Params
from common.realtime import Ratekeeper, Priority, config_realtime_process
@ -17,33 +18,39 @@ from common.kalman.simple_kalman import KF1D
_LEAD_ACCEL_TAU = 1.5
# radar tracks
SPEED, ACCEL = 0, 1 # Kalman filter states enum
SPEED, ACCEL = 0, 1 # Kalman filter states enum
# stationary qualification parameters
v_ego_stationary = 4. # no stationary object flag below this speed
V_EGO_STATIONARY = 4. # no stationary object flag below this speed
RADAR_TO_CENTER = 2.7 # (deprecated) RADAR is ~ 2.7m ahead from center of car
RADAR_TO_CAMERA = 1.52 # RADAR is ~ 1.5m ahead from center of mesh frame
RADAR_TO_CAMERA = 1.52 # RADAR is ~ 1.5m ahead from center of mesh frame
def get_RadarState_from_vision(lead_msg, v_ego, model_v_ego):
lead_v_rel_pred = lead_msg.v[0] - model_v_ego
return {
"dRel": float(lead_msg.x[0] - RADAR_TO_CAMERA),
"yRel": float(-lead_msg.y[0]),
"vRel": float(lead_v_rel_pred),
"vLead": float(v_ego + lead_v_rel_pred),
"vLeadK": float(v_ego + lead_v_rel_pred),
"aLeadK": 0.0,
"aLeadTau": 0.3,
"fcw": False,
"modelProb": float(lead_msg.prob),
"radar": False,
"status": True
}
class KalmanParams:
def __init__(self, dt: float):
# Lead Kalman Filter params, calculating K from A, C, Q, R requires the control library.
# hardcoding a lookup table to compute K for values of radar_ts between 0.01s and 0.2s
assert dt > .01 and dt < .2, "Radar time step must be between .01s and 0.2s"
self.A = [[1.0, dt], [0.0, 1.0]]
self.C = [1.0, 0.0]
#Q = np.matrix([[10., 0.0], [0.0, 100.]])
#R = 1e3
#K = np.matrix([[ 0.05705578], [ 0.03073241]])
dts = [dt * 0.01 for dt in range(1, 21)]
K0 = [0.12287673, 0.14556536, 0.16522756, 0.18281627, 0.1988689, 0.21372394,
0.22761098, 0.24069424, 0.253096, 0.26491023, 0.27621103, 0.28705801,
0.29750003, 0.30757767, 0.31732515, 0.32677158, 0.33594201, 0.34485814,
0.35353899, 0.36200124]
K1 = [0.29666309, 0.29330885, 0.29042818, 0.28787125, 0.28555364, 0.28342219,
0.28144091, 0.27958406, 0.27783249, 0.27617149, 0.27458948, 0.27307714,
0.27162685, 0.27023228, 0.26888809, 0.26758976, 0.26633338, 0.26511557,
0.26393339, 0.26278425]
self.K = [[interp(dt, dts, K0)], [interp(dt, dts, K1)]]
class Track():
def __init__(self, v_lead, kalman_params):
class Track:
def __init__(self, v_lead: float, kalman_params: KalmanParams):
self.cnt = 0
self.aLeadTau = _LEAD_ACCEL_TAU
self.K_A = kalman_params.A
@ -51,7 +58,7 @@ class Track():
self.K_K = kalman_params.K
self.kf = KF1D([[v_lead], [0.0]], self.K_A, self.K_C, self.K_K)
def update(self, d_rel, y_rel, v_rel, v_lead, measured):
def update(self, d_rel: float, y_rel: float, v_rel: float, v_lead: float, measured: float):
# relative values, copy
self.dRel = d_rel # LONG_DIST
self.yRel = y_rel # -LAT_DIST
@ -78,13 +85,12 @@ class Track():
# Weigh y higher since radar is inaccurate in this dimension
return [self.dRel, self.yRel*2, self.vRel]
def reset_a_lead(self, aLeadK, aLeadTau):
def reset_a_lead(self, aLeadK: float, aLeadTau: float):
self.kf = KF1D([[self.vLead], [aLeadK]], self.K_A, self.K_C, self.K_K)
self.aLeadK = aLeadK
self.aLeadTau = aLeadTau
def get_RadarState(self, model_prob=0.0):
def get_RadarState(self, model_prob: float = 0.0):
return {
"dRel": float(self.dRel),
"yRel": float(self.yRel),
@ -99,47 +105,25 @@ class Track():
"aLeadTau": float(self.aLeadTau)
}
def __str__(self):
ret = f"x: {self.dRel:4.1f} y: {self.yRel:4.1f} v: {self.vRel:4.1f} a: {self.aLeadK:4.1f}"
return ret
def potential_low_speed_lead(self, v_ego):
def potential_low_speed_lead(self, v_ego: float):
# stop for stuff in front of you and low speed, even without model confirmation
# Radar points closer than 0.75, are almost always glitches on toyota radars
return abs(self.yRel) < 1.0 and (v_ego < v_ego_stationary) and (0.75 < self.dRel < 25)
return abs(self.yRel) < 1.0 and (v_ego < V_EGO_STATIONARY) and (0.75 < self.dRel < 25)
def is_potential_fcw(self, model_prob):
def is_potential_fcw(self, model_prob: float):
return model_prob > .9
class KalmanParams():
def __init__(self, dt):
# Lead Kalman Filter params, calculating K from A, C, Q, R requires the control library.
# hardcoding a lookup table to compute K for values of radar_ts between 0.01s and 0.2s
assert dt > .01 and dt < .2, "Radar time step must be between .01s and 0.2s"
self.A = [[1.0, dt], [0.0, 1.0]]
self.C = [1.0, 0.0]
#Q = np.matrix([[10., 0.0], [0.0, 100.]])
#R = 1e3
#K = np.matrix([[ 0.05705578], [ 0.03073241]])
dts = [dt * 0.01 for dt in range(1, 21)]
K0 = [0.12287673, 0.14556536, 0.16522756, 0.18281627, 0.1988689, 0.21372394,
0.22761098, 0.24069424, 0.253096, 0.26491023, 0.27621103, 0.28705801,
0.29750003, 0.30757767, 0.31732515, 0.32677158, 0.33594201, 0.34485814,
0.35353899, 0.36200124]
K1 = [0.29666309, 0.29330885, 0.29042818, 0.28787125, 0.28555364, 0.28342219,
0.28144091, 0.27958406, 0.27783249, 0.27617149, 0.27458948, 0.27307714,
0.27162685, 0.27023228, 0.26888809, 0.26758976, 0.26633338, 0.26511557,
0.26393339, 0.26278425]
self.K = [[interp(dt, dts, K0)], [interp(dt, dts, K1)]]
def __str__(self):
ret = f"x: {self.dRel:4.1f} y: {self.yRel:4.1f} v: {self.vRel:4.1f} a: {self.aLeadK:4.1f}"
return ret
def laplacian_pdf(x, mu, b):
def laplacian_pdf(x: float, mu: float, b: float):
b = max(b, 1e-4)
return math.exp(-abs(x-mu)/b)
def match_vision_to_track(v_ego, lead, tracks):
def match_vision_to_track(v_ego: float, lead: capnp._DynamicStructReader, tracks: Dict[int, Track]):
offset_vision_dist = lead.x[0] - RADAR_TO_CAMERA
def prob(c):
@ -162,7 +146,24 @@ def match_vision_to_track(v_ego, lead, tracks):
return None
def get_lead(v_ego, ready, tracks, lead_msg, model_v_ego, low_speed_override=True):
def get_RadarState_from_vision(lead_msg: capnp._DynamicStructReader, v_ego: float, model_v_ego: float):
lead_v_rel_pred = lead_msg.v[0] - model_v_ego
return {
"dRel": float(lead_msg.x[0] - RADAR_TO_CAMERA),
"yRel": float(-lead_msg.y[0]),
"vRel": float(lead_v_rel_pred),
"vLead": float(v_ego + lead_v_rel_pred),
"vLeadK": float(v_ego + lead_v_rel_pred),
"aLeadK": 0.0,
"aLeadTau": 0.3,
"fcw": False,
"modelProb": float(lead_msg.prob),
"radar": False,
"status": True
}
def get_lead(v_ego: float, ready: bool, tracks: Dict[int, Track], lead_msg: capnp._DynamicStructReader, model_v_ego: float, low_speed_override: bool = True) -> Dict[str, Any]:
# Determine leads, this is where the essential logic happens
if len(tracks) > 0 and ready and lead_msg.prob > .5:
track = match_vision_to_track(v_ego, lead_msg, tracks)
@ -187,22 +188,30 @@ def get_lead(v_ego, ready, tracks, lead_msg, model_v_ego, low_speed_override=Tru
return lead_dict
class RadarD():
def __init__(self, radar_ts, delay=0):
self.current_time = 0
class RadarD:
def __init__(self, radar_ts: float, delay: int = 0):
self.current_time = 0.0
self.tracks = defaultdict(dict)
self.tracks: Dict[int, Track] = {}
self.kalman_params = KalmanParams(radar_ts)
# v_ego
self.v_ego = 0.
self.v_ego_hist = deque([0], maxlen=delay+1)
self.v_ego = 0.0
self.v_ego_hist = deque([0.0], maxlen=delay+1)
self.radar_state: Optional[capnp._DynamicStructBuilder] = None
self.radar_state_valid = False
self.ready = False
def update(self, sm, rr):
def update(self, sm: messaging.SubMaster, rr: Optional[car.RadarData]):
self.current_time = 1e-9*max(sm.logMonoTime.values())
radar_points = []
radar_errors = []
if rr is not None:
radar_points = rr.points
radar_errors = rr.errors
if sm.updated['carState']:
self.v_ego = sm['carState'].vEgo
self.v_ego_hist.append(self.v_ego)
@ -210,7 +219,7 @@ class RadarD():
self.ready = True
ar_pts = {}
for pt in rr.points:
for pt in radar_points:
ar_pts[pt.trackId] = [pt.dRel, pt.yRel, pt.vRel, pt.measured]
# *** remove missing points from meta data ***
@ -231,12 +240,11 @@ class RadarD():
self.tracks[ids].update(rpt[0], rpt[1], rpt[2], v_lead, rpt[3])
# *** publish radarState ***
dat = messaging.new_message('radarState')
dat.valid = sm.all_checks() and len(rr.errors) == 0
radarState = dat.radarState
radarState.mdMonoTime = sm.logMonoTime['modelV2']
radarState.radarErrors = list(rr.errors)
radarState.carStateMonoTime = sm.logMonoTime['carState']
self.radar_state_valid = sm.all_checks() and len(radar_errors) == 0
self.radar_state = log.RadarState.new_message()
self.radar_state.mdMonoTime = sm.logMonoTime['modelV2']
self.radar_state.radarErrors = list(radar_errors)
self.radar_state.carStateMonoTime = sm.logMonoTime['carState']
if len(sm['modelV2'].temporalPose.trans):
model_v_ego = sm['modelV2'].temporalPose.trans[0]
@ -244,13 +252,32 @@ class RadarD():
model_v_ego = self.v_ego
leads_v3 = sm['modelV2'].leadsV3
if len(leads_v3) > 1:
radarState.leadOne = get_lead(self.v_ego, self.ready, self.tracks, leads_v3[0], model_v_ego, low_speed_override=True)
radarState.leadTwo = get_lead(self.v_ego, self.ready, self.tracks, leads_v3[1], model_v_ego, low_speed_override=False)
return dat
self.radar_state.leadOne = get_lead(self.v_ego, self.ready, self.tracks, leads_v3[0], model_v_ego, low_speed_override=True)
self.radar_state.leadTwo = get_lead(self.v_ego, self.ready, self.tracks, leads_v3[1], model_v_ego, low_speed_override=False)
def publish(self, pm: messaging.PubMaster, lag_ms: float):
assert self.radar_state is not None
radar_msg = messaging.new_message("radarState")
radar_msg.valid = self.radar_state_valid
radar_msg.radarState = self.radar_state
radar_msg.radarState.cumLagMs = lag_ms
pm.send("radarState", radar_msg)
# publish tracks for UI debugging (keep last)
tracks_msg = messaging.new_message('liveTracks', len(self.tracks))
for index, tid in enumerate(sorted(self.tracks.keys())):
tracks_msg.liveTracks[index] = {
"trackId": tid,
"dRel": float(self.tracks[tid].dRel),
"yRel": float(self.tracks[tid].yRel),
"vRel": float(self.tracks[tid].vRel),
}
pm.send('liveTracks', tracks_msg)
# fuses camera and radar data for best lead detection
def radard_thread(sm=None, pm=None, can_sock=None):
def radard_thread(sm: Optional[messaging.SubMaster] = None, pm: Optional[messaging.PubMaster] = None, can_sock: Optional[messaging.SubSocket] = None):
config_realtime_process(5, Priority.CTRL_LOW)
# wait for stats about the car to come in from controls
@ -284,28 +311,13 @@ def radard_thread(sm=None, pm=None, can_sock=None):
sm.update(0)
dat = RD.update(sm, rr)
dat.radarState.cumLagMs = -rk.remaining*1000.
pm.send('radarState', dat)
# *** publish tracks for UI debugging (keep last) ***
tracks = RD.tracks
dat = messaging.new_message('liveTracks', len(tracks))
for cnt, ids in enumerate(sorted(tracks.keys())):
dat.liveTracks[cnt] = {
"trackId": ids,
"dRel": float(tracks[ids].dRel),
"yRel": float(tracks[ids].yRel),
"vRel": float(tracks[ids].vRel),
}
pm.send('liveTracks', dat)
RD.update(sm, rr)
RD.publish(pm, -rk.remaining*1000.0)
rk.monitor_time()
def main(sm=None, pm=None, can_sock=None):
def main(sm: messaging.SubMaster = None, pm: messaging.PubMaster = None, can_sock: messaging.SubSocket = None):
radard_thread(sm, pm, can_sock)

Loading…
Cancel
Save