| 
						
						
							
								
							
						
						
					 | 
				
				 | 
				 | 
				
					@ -84,10 +84,10 @@ def masked_normalized_cross_correlation(expected_sig: np.ndarray, actual_sig: np | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					class Points: | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					  def __init__(self, num_points: int): | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    self.times = deque[float]([0.0 for _ in range(num_points)], maxlen=num_points) | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    self.okay = deque[bool]([False for _ in range(num_points)], maxlen=num_points) | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    self.desired = deque[float]([0.0 for _ in range(num_points)], maxlen=num_points) | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    self.actual = deque[float]([0.0 for _ in range(num_points)], maxlen=num_points) | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    self.times = deque[float]([0.0] * num_points, maxlen=num_points) | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    self.okay = deque[bool]([False] * num_points, maxlen=num_points) | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    self.desired = deque[float]([0.0] * num_points, maxlen=num_points) | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    self.actual = deque[float]([0.0] * num_points, maxlen=num_points) | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					  @property | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					  def num_points(self): | 
				
			
			
		
	
	
		
			
				
					| 
						
							
								
							
						
						
						
					 | 
				
				 | 
				 | 
				
					
  |