Getting rid of openpilot.common.numpy_fast (#34368)

* Got rid openpilot.common.numpy_fast

* fixed some data type erros

* importing numpy instead of importing specific functions

* fixing some numpy importing mistakes

* Update selfdrive/car/cruise.py

---------

Co-authored-by: Adeeb Shihadeh <adeebshihadeh@gmail.com>
pull/34382/head
Sammohana 3 months ago committed by GitHub
parent c54cd4569a
commit 8eebce75ac
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
  1. 15
      common/pid.py
  2. 21
      common/tests/test_numpy_fast.py
  3. 6
      selfdrive/car/cruise.py
  4. 11
      selfdrive/controls/controlsd.py
  5. 8
      selfdrive/controls/lib/drive_helpers.py
  6. 4
      selfdrive/controls/lib/latcontrol.py
  7. 2
      selfdrive/controls/lib/latcontrol_angle.py
  8. 10
      selfdrive/controls/lib/latcontrol_pid.py
  9. 24
      selfdrive/controls/lib/latcontrol_torque.py
  10. 4
      selfdrive/controls/lib/longcontrol.py
  11. 7
      selfdrive/controls/lib/longitudinal_mpc_lib/long_mpc.py
  12. 21
      selfdrive/controls/lib/longitudinal_planner.py
  13. 4
      selfdrive/controls/radard.py
  14. 6
      selfdrive/debug/live_cpu_and_temp.py
  15. 15
      selfdrive/locationd/paramsd.py
  16. 6
      selfdrive/monitoring/helpers.py
  17. 2
      selfdrive/test/longitudinal_maneuvers/plant.py
  18. 4
      system/hardware/fan_controller.py
  19. 6
      tools/joystick/joystick_control.py
  20. 6
      tools/joystick/joystickd.py
  21. 6
      tools/sim/bridge/common.py

@ -1,9 +1,6 @@
import numpy as np
from numbers import Number
from openpilot.common.numpy_fast import clip, interp
class PIDController:
def __init__(self, k_p, k_i, k_f=0., k_d=0., pos_limit=1e308, neg_limit=-1e308, rate=100):
self._k_p = k_p
@ -28,15 +25,15 @@ class PIDController:
@property
def k_p(self):
return interp(self.speed, self._k_p[0], self._k_p[1])
return np.interp(self.speed, self._k_p[0], self._k_p[1])
@property
def k_i(self):
return interp(self.speed, self._k_i[0], self._k_i[1])
return np.interp(self.speed, self._k_i[0], self._k_i[1])
@property
def k_d(self):
return interp(self.speed, self._k_d[0], self._k_d[1])
return np.interp(self.speed, self._k_d[0], self._k_d[1])
@property
def error_integral(self):
@ -64,10 +61,10 @@ class PIDController:
# Clip i to prevent exceeding control limits
control_no_i = self.p + self.d + self.f
control_no_i = clip(control_no_i, self.neg_limit, self.pos_limit)
self.i = clip(self.i, self.neg_limit - control_no_i, self.pos_limit - control_no_i)
control_no_i = np.clip(control_no_i, self.neg_limit, self.pos_limit)
self.i = np.clip(self.i, self.neg_limit - control_no_i, self.pos_limit - control_no_i)
control = self.p + self.i + self.d + self.f
self.control = clip(control, self.neg_limit, self.pos_limit)
self.control = np.clip(control, self.neg_limit, self.pos_limit)
return self.control

@ -1,21 +0,0 @@
import numpy as np
from openpilot.common.numpy_fast import interp
class TestInterp:
def test_correctness_controls(self):
_A_CRUISE_MIN_BP = np.asarray([0., 5., 10., 20., 40.])
_A_CRUISE_MIN_V = np.asarray([-1.0, -.8, -.67, -.5, -.30])
v_ego_arr = [-1, -1e-12, 0, 4, 5, 6, 7, 10, 11, 15.2, 20, 21, 39,
39.999999, 40, 41]
expected = np.interp(v_ego_arr, _A_CRUISE_MIN_BP, _A_CRUISE_MIN_V)
actual = interp(v_ego_arr, _A_CRUISE_MIN_BP, _A_CRUISE_MIN_V)
np.testing.assert_equal(actual, expected)
for v_ego in v_ego_arr:
expected = np.interp(v_ego, _A_CRUISE_MIN_BP, _A_CRUISE_MIN_V)
actual = interp(v_ego, _A_CRUISE_MIN_BP, _A_CRUISE_MIN_V)
np.testing.assert_equal(actual, expected)

@ -1,8 +1,8 @@
import math
import numpy as np
from cereal import car
from openpilot.common.conversions import Conversions as CV
from openpilot.common.numpy_fast import clip
# WARNING: this value was determined based on the model's training distribution,
@ -106,7 +106,7 @@ class VCruiseHelper:
if CS.gasPressed and button_type in (ButtonType.decelCruise, ButtonType.setCruise):
self.v_cruise_kph = max(self.v_cruise_kph, CS.vEgo * CV.MS_TO_KPH)
self.v_cruise_kph = clip(round(self.v_cruise_kph, 1), V_CRUISE_MIN, V_CRUISE_MAX)
self.v_cruise_kph = np.clip(round(self.v_cruise_kph, 1), V_CRUISE_MIN, V_CRUISE_MAX)
def update_button_timers(self, CS, enabled):
# increment timer for buttons still pressed
@ -130,6 +130,6 @@ class VCruiseHelper:
if any(b.type in (ButtonType.accelCruise, ButtonType.resumeCruise) for b in CS.buttonEvents) and self.v_cruise_initialized:
self.v_cruise_kph = self.v_cruise_kph_last
else:
self.v_cruise_kph = int(round(clip(CS.vEgo * CV.MS_TO_KPH, initial, V_CRUISE_MAX)))
self.v_cruise_kph = int(round(np.clip(CS.vEgo * CV.MS_TO_KPH, initial, V_CRUISE_MAX)))
self.v_cruise_cluster_kph = self.v_cruise_kph

@ -106,15 +106,16 @@ class Controls:
# accel PID loop
pid_accel_limits = self.CI.get_pid_accel_limits(self.CP, CS.vEgo, CS.vCruise * CV.KPH_TO_MS)
actuators.accel = self.LoC.update(CC.longActive, CS, long_plan.aTarget, long_plan.shouldStop, pid_accel_limits)
actuators.accel = float(self.LoC.update(CC.longActive, CS, long_plan.aTarget, long_plan.shouldStop, pid_accel_limits))
# Steering PID loop and lateral MPC
self.desired_curvature = clip_curvature(CS.vEgo, self.desired_curvature, model_v2.action.desiredCurvature)
actuators.curvature = self.desired_curvature
actuators.steer, actuators.steeringAngleDeg, lac_log = self.LaC.update(CC.latActive, CS, self.VM, lp,
actuators.curvature = float(self.desired_curvature)
steer, steeringAngleDeg, lac_log = self.LaC.update(CC.latActive, CS, self.VM, lp,
self.steer_limited, self.desired_curvature,
self.calibrated_pose) # TODO what if not available
actuators.steer = float(steer)
actuators.steeringAngleDeg = float(steeringAngleDeg)
# Ensure no NaNs/Infs
for p in ACTUATOR_FIELDS:
attr = getattr(actuators, p)
@ -179,7 +180,7 @@ class Controls:
cs.longitudinalPlanMonoTime = self.sm.logMonoTime['longitudinalPlan']
cs.lateralPlanMonoTime = self.sm.logMonoTime['modelV2']
cs.desiredCurvature = self.desired_curvature
cs.desiredCurvature = float(self.desired_curvature)
cs.longControlState = self.LoC.long_control_state
cs.upAccelCmd = float(self.LoC.pid.p)
cs.uiAccelCmd = float(self.LoC.pid.i)

@ -1,5 +1,5 @@
import numpy as np
from cereal import log
from openpilot.common.numpy_fast import clip
from openpilot.common.realtime import DT_CTRL
MIN_SPEED = 1.0
@ -13,10 +13,10 @@ MAX_LATERAL_JERK = 5.0
MAX_VEL_ERR = 5.0
def clip_curvature(v_ego, prev_curvature, new_curvature):
new_curvature = clip(new_curvature, -MAX_CURVATURE, MAX_CURVATURE)
new_curvature = np.clip(new_curvature, -MAX_CURVATURE, MAX_CURVATURE)
v_ego = max(MIN_SPEED, v_ego)
max_curvature_rate = MAX_LATERAL_JERK / (v_ego**2) # inexact calculation, check https://github.com/commaai/openpilot/pull/24755
safe_desired_curvature = clip(new_curvature,
safe_desired_curvature = np.clip(new_curvature,
prev_curvature - max_curvature_rate * DT_CTRL,
prev_curvature + max_curvature_rate * DT_CTRL)
@ -26,6 +26,6 @@ def clip_curvature(v_ego, prev_curvature, new_curvature):
def get_speed_error(modelV2: log.ModelDataV2, v_ego: float) -> float:
# ToDo: Try relative error, and absolute speed
if len(modelV2.temporalPose.trans):
vel_err = clip(modelV2.temporalPose.trans[0] - v_ego, -MAX_VEL_ERR, MAX_VEL_ERR)
vel_err = np.clip(modelV2.temporalPose.trans[0] - v_ego, -MAX_VEL_ERR, MAX_VEL_ERR)
return float(vel_err)
return 0.0

@ -1,6 +1,6 @@
import numpy as np
from abc import abstractmethod, ABC
from openpilot.common.numpy_fast import clip
from openpilot.common.realtime import DT_CTRL
MIN_LATERAL_CONTROL_SPEED = 0.3 # m/s
@ -28,5 +28,5 @@ class LatControl(ABC):
self.sat_count += self.sat_count_rate
else:
self.sat_count -= self.sat_count_rate
self.sat_count = clip(self.sat_count, 0.0, self.sat_limit)
self.sat_count = np.clip(self.sat_count, 0.0, self.sat_limit)
return self.sat_count > (self.sat_limit - 1e-3)

@ -23,7 +23,7 @@ class LatControlAngle(LatControl):
angle_steers_des += params.angleOffsetDeg
angle_control_saturated = abs(angle_steers_des - CS.steeringAngleDeg) > STEER_ANGLE_SATURATION_THRESHOLD
angle_log.saturated = self._check_saturation(angle_control_saturated, CS, False)
angle_log.saturated = bool(self._check_saturation(angle_control_saturated, CS, False))
angle_log.steeringAngleDeg = float(CS.steeringAngleDeg)
angle_log.steeringAngleDesiredDeg = angle_steers_des
return 0, float(angle_steers_des), angle_log

@ -39,10 +39,10 @@ class LatControlPID(LatControl):
output_steer = self.pid.update(error, override=CS.steeringPressed,
feedforward=steer_feedforward, speed=CS.vEgo)
pid_log.active = True
pid_log.p = self.pid.p
pid_log.i = self.pid.i
pid_log.f = self.pid.f
pid_log.output = output_steer
pid_log.saturated = self._check_saturation(self.steer_max - abs(output_steer) < 1e-3, CS, steer_limited)
pid_log.p = float(self.pid.p)
pid_log.i = float(self.pid.i)
pid_log.f = float(self.pid.f)
pid_log.output = float(output_steer)
pid_log.saturated = bool(self._check_saturation(self.steer_max - abs(output_steer) < 1e-3, CS, steer_limited))
return output_steer, angle_steers_des, pid_log

@ -1,8 +1,8 @@
import math
import numpy as np
from cereal import log
from opendbc.car.interfaces import LatControlInputs
from openpilot.common.numpy_fast import interp
from openpilot.selfdrive.controls.lib.latcontrol import LatControl
from openpilot.common.pid import PIDController
from openpilot.selfdrive.controls.lib.vehicle_model import ACCELERATION_DUE_TO_GRAVITY
@ -51,7 +51,7 @@ class LatControlTorque(LatControl):
else:
assert calibrated_pose is not None
actual_curvature_pose = calibrated_pose.angular_velocity.yaw / CS.vEgo
actual_curvature = interp(CS.vEgo, [2.0, 5.0], [actual_curvature_vm, actual_curvature_pose])
actual_curvature = np.interp(CS.vEgo, [2.0, 5.0], [actual_curvature_vm, actual_curvature_pose])
curvature_deadzone = 0.0
desired_lateral_accel = desired_curvature * CS.vEgo ** 2
@ -60,7 +60,7 @@ class LatControlTorque(LatControl):
actual_lateral_accel = actual_curvature * CS.vEgo ** 2
lateral_accel_deadzone = curvature_deadzone * CS.vEgo ** 2
low_speed_factor = interp(CS.vEgo, LOW_SPEED_X, LOW_SPEED_Y)**2
low_speed_factor = np.interp(CS.vEgo, LOW_SPEED_X, LOW_SPEED_Y)**2
setpoint = desired_lateral_accel + low_speed_factor * desired_curvature
measurement = actual_lateral_accel + low_speed_factor * actual_curvature
gravity_adjusted_lateral_accel = desired_lateral_accel - roll_compensation
@ -68,7 +68,7 @@ class LatControlTorque(LatControl):
setpoint, lateral_accel_deadzone, friction_compensation=False, gravity_adjusted=False)
torque_from_measurement = self.torque_from_lateral_accel(LatControlInputs(measurement, roll_compensation, CS.vEgo, CS.aEgo), self.torque_params,
measurement, lateral_accel_deadzone, friction_compensation=False, gravity_adjusted=False)
pid_log.error = torque_from_setpoint - torque_from_measurement
pid_log.error = float(torque_from_setpoint - torque_from_measurement)
ff = self.torque_from_lateral_accel(LatControlInputs(gravity_adjusted_lateral_accel, roll_compensation, CS.vEgo, CS.aEgo), self.torque_params,
desired_lateral_accel - actual_lateral_accel, lateral_accel_deadzone, friction_compensation=True,
gravity_adjusted=True)
@ -80,14 +80,14 @@ class LatControlTorque(LatControl):
freeze_integrator=freeze_integrator)
pid_log.active = True
pid_log.p = self.pid.p
pid_log.i = self.pid.i
pid_log.d = self.pid.d
pid_log.f = self.pid.f
pid_log.output = -output_torque
pid_log.actualLateralAccel = actual_lateral_accel
pid_log.desiredLateralAccel = desired_lateral_accel
pid_log.saturated = self._check_saturation(self.steer_max - abs(output_torque) < 1e-3, CS, steer_limited)
pid_log.p = float(self.pid.p)
pid_log.i = float(self.pid.i)
pid_log.d = float(self.pid.d)
pid_log.f = float(self.pid.f)
pid_log.output = float(-output_torque)
pid_log.actualLateralAccel = float(actual_lateral_accel)
pid_log.desiredLateralAccel = float(desired_lateral_accel)
pid_log.saturated = bool(self._check_saturation(self.steer_max - abs(output_torque) < 1e-3, CS, steer_limited))
# TODO left is positive in this convention
return -output_torque, 0.0, pid_log

@ -1,5 +1,5 @@
import numpy as np
from cereal import car
from openpilot.common.numpy_fast import clip
from openpilot.common.realtime import DT_CTRL
from openpilot.selfdrive.controls.lib.drive_helpers import CONTROL_N
from openpilot.common.pid import PIDController
@ -84,5 +84,5 @@ class LongControl:
output_accel = self.pid.update(error, speed=CS.vEgo,
feedforward=a_target)
self.last_output_accel = clip(output_accel, accel_limits[0], accel_limits[1])
self.last_output_accel = np.clip(output_accel, accel_limits[0], accel_limits[1])
return self.last_output_accel

@ -4,7 +4,6 @@ import time
import numpy as np
from cereal import log
from opendbc.car.interfaces import ACCEL_MIN
from openpilot.common.numpy_fast import clip
from openpilot.common.realtime import DT_MDL
from openpilot.common.swaglog import cloudlog
# WARNING: imports outside of constants will not trigger a rebuild
@ -320,9 +319,9 @@ class LongitudinalMpc:
# MPC will not converge if immediate crash is expected
# Clip lead distance to what is still possible to brake for
min_x_lead = ((v_ego + v_lead)/2) * (v_ego - v_lead) / (-ACCEL_MIN * 2)
x_lead = clip(x_lead, min_x_lead, 1e8)
v_lead = clip(v_lead, 0.0, 1e8)
a_lead = clip(a_lead, -10., 5.)
x_lead = np.clip(x_lead, min_x_lead, 1e8)
v_lead = np.clip(v_lead, 0.0, 1e8)
a_lead = np.clip(a_lead, -10., 5.)
lead_xv = self.extrapolate_lead(x_lead, v_lead, a_lead, a_lead_tau)
return lead_xv

@ -1,7 +1,6 @@
#!/usr/bin/env python3
import math
import numpy as np
from openpilot.common.numpy_fast import clip, interp
import cereal.messaging as messaging
from opendbc.car.interfaces import ACCEL_MIN, ACCEL_MAX
@ -30,7 +29,7 @@ _A_TOTAL_MAX_BP = [20., 40.]
def get_max_accel(v_ego):
return interp(v_ego, A_CRUISE_MAX_BP, A_CRUISE_MAX_VALS)
return np.interp(v_ego, A_CRUISE_MAX_BP, A_CRUISE_MAX_VALS)
def get_coast_accel(pitch):
return np.sin(pitch) * -5.65 - 0.3 # fitted from data using xx/projects/allow_throttle/compute_coast_accel.py
@ -43,7 +42,7 @@ def limit_accel_in_turns(v_ego, angle_steers, a_target, CP):
"""
# FIXME: This function to calculate lateral accel is incorrect and should use the VehicleModel
# The lookup table for turns should also be updated if we do this
a_total_max = interp(v_ego, _A_TOTAL_MAX_BP, _A_TOTAL_MAX_V)
a_total_max = np.interp(v_ego, _A_TOTAL_MAX_BP, _A_TOTAL_MAX_V)
a_y = v_ego ** 2 * angle_steers * CV.DEG_TO_RAD / (CP.steerRatio * CP.wheelbase)
a_x_allowed = math.sqrt(max(a_total_max ** 2 - a_y ** 2, 0.))
@ -55,9 +54,9 @@ def get_accel_from_plan(speeds, accels, action_t=DT_MDL, vEgoStopping=0.05):
v_now = speeds[0]
a_now = accels[0]
v_target = interp(action_t, CONTROL_N_T_IDX, speeds)
v_target = np.interp(action_t, CONTROL_N_T_IDX, speeds)
a_target = 2 * (v_target - v_now) / (action_t) - a_now
v_target_1sec = interp(action_t + 1.0, CONTROL_N_T_IDX, speeds)
v_target_1sec = np.interp(action_t + 1.0, CONTROL_N_T_IDX, speeds)
else:
v_target = 0.0
v_target_1sec = 0.0
@ -139,7 +138,7 @@ class LongitudinalPlanner:
if reset_state:
self.v_desired_filter.x = v_ego
# Clip aEgo to cruise limits to prevent large accelerations when becoming active
self.a_desired = clip(sm['carState'].aEgo, accel_limits[0], accel_limits[1])
self.a_desired = np.clip(sm['carState'].aEgo, accel_limits[0], accel_limits[1])
# Prevent divergence, smooth in current v_ego
self.v_desired_filter.x = max(0.0, self.v_desired_filter.update(v_ego))
@ -151,7 +150,7 @@ class LongitudinalPlanner:
if not self.allow_throttle:
clipped_accel_coast = max(accel_coast, accel_limits_turns[0])
clipped_accel_coast_interp = interp(v_ego, [MIN_ALLOW_THROTTLE_SPEED, MIN_ALLOW_THROTTLE_SPEED*2], [accel_limits_turns[1], clipped_accel_coast])
clipped_accel_coast_interp = np.interp(v_ego, [MIN_ALLOW_THROTTLE_SPEED, MIN_ALLOW_THROTTLE_SPEED*2], [accel_limits_turns[1], clipped_accel_coast])
accel_limits_turns[1] = min(accel_limits_turns[1], clipped_accel_coast_interp)
if force_slow_decel:
@ -176,7 +175,7 @@ class LongitudinalPlanner:
# Interpolate 0.05 seconds and save as starting point for next iteration
a_prev = self.a_desired
self.a_desired = float(interp(self.dt, CONTROL_N_T_IDX, self.a_desired_trajectory))
self.a_desired = float(np.interp(self.dt, CONTROL_N_T_IDX, self.a_desired_trajectory))
self.v_desired_filter.x = self.v_desired_filter.x + self.dt * (self.a_desired + a_prev) / 2.0
def publish(self, sm, pm):
@ -200,9 +199,9 @@ class LongitudinalPlanner:
action_t = self.CP.longitudinalActuatorDelay + DT_MDL
a_target, should_stop = get_accel_from_plan(longitudinalPlan.speeds, longitudinalPlan.accels,
action_t=action_t, vEgoStopping=self.CP.vEgoStopping)
longitudinalPlan.aTarget = a_target
longitudinalPlan.shouldStop = should_stop
longitudinalPlan.aTarget = float(a_target)
longitudinalPlan.shouldStop = bool(should_stop)
longitudinalPlan.allowBrake = True
longitudinalPlan.allowThrottle = self.allow_throttle
longitudinalPlan.allowThrottle = bool(self.allow_throttle)
pm.send('longitudinalPlan', plan_send)

@ -1,11 +1,11 @@
#!/usr/bin/env python3
import math
import numpy as np
from collections import deque
from typing import Any
import capnp
from cereal import messaging, log, car
from openpilot.common.numpy_fast import interp
from openpilot.common.params import Params
from openpilot.common.realtime import DT_MDL, Priority, config_realtime_process
from openpilot.common.swaglog import cloudlog
@ -44,7 +44,7 @@ class KalmanParams:
0.28144091, 0.27958406, 0.27783249, 0.27617149, 0.27458948, 0.27307714,
0.27162685, 0.27023228, 0.26888809, 0.26758976, 0.26633338, 0.26511557,
0.26393339, 0.26278425]
self.K = [[interp(dt, dts, K0)], [interp(dt, dts, K1)]]
self.K = [[np.interp(dt, dts, K0)], [np.interp(dt, dts, K1)]]
class Track:

@ -1,10 +1,10 @@
#!/usr/bin/env python3
import argparse
import numpy as np
import capnp
from collections import defaultdict
from cereal.messaging import SubMaster
from openpilot.common.numpy_fast import mean
def cputime_total(ct):
return ct.user + ct.nice + ct.system + ct.idle + ct.iowait + ct.irq + ct.softirq
@ -49,7 +49,7 @@ if __name__ == "__main__":
if sm.updated['deviceState']:
t = sm['deviceState']
last_temp = mean(t.cpuTempC)
last_temp = np.mean(t.cpuTempC)
last_mem = t.memoryUsagePercent
if sm.updated['procLog']:
@ -72,7 +72,7 @@ if __name__ == "__main__":
total_times = total_times_new[:]
busy_times = busy_times_new[:]
print(f"CPU {100.0 * mean(cores):.2f}% - RAM: {last_mem:.2f}% - Temp {last_temp:.2f}C")
print(f"CPU {100.0 * np.mean(cores):.2f}% - RAM: {last_mem:.2f}% - Temp {last_temp:.2f}C")
if args.cpu and prev_proclog is not None and prev_proclog_t is not None:
procs: dict[str, float] = defaultdict(float)

@ -8,7 +8,6 @@ import cereal.messaging as messaging
from cereal import car, log
from openpilot.common.params import Params
from openpilot.common.realtime import config_realtime_process, DT_MDL
from openpilot.common.numpy_fast import clip
from openpilot.selfdrive.locationd.models.car_kf import CarKalman, ObservationKind, States
from openpilot.selfdrive.locationd.models.constants import GENERATED_DIR
from openpilot.selfdrive.locationd.helpers import PoseCalibrator, Pose
@ -66,7 +65,7 @@ class ParamsLearner:
# This is done to bound the road roll estimate when localizer values are invalid
roll = 0.0
roll_std = np.radians(10.0)
self.roll = clip(roll, self.roll - ROLL_MAX_DELTA, self.roll + ROLL_MAX_DELTA)
self.roll = np.clip(roll, self.roll - ROLL_MAX_DELTA, self.roll + ROLL_MAX_DELTA)
yaw_rate_valid = msg.angularVelocityDevice.valid and self.calibrator.calib_valid
yaw_rate_valid = yaw_rate_valid and 0 < self.yaw_rate_std < 10 # rad/s
@ -203,11 +202,11 @@ def main():
learner = ParamsLearner(CP, CP.steerRatio, 1.0, 0.0)
x = learner.kf.x
angle_offset_average = clip(math.degrees(x[States.ANGLE_OFFSET].item()),
angle_offset_average = np.clip(math.degrees(x[States.ANGLE_OFFSET].item()),
angle_offset_average - MAX_ANGLE_OFFSET_DELTA, angle_offset_average + MAX_ANGLE_OFFSET_DELTA)
angle_offset = clip(math.degrees(x[States.ANGLE_OFFSET].item() + x[States.ANGLE_OFFSET_FAST].item()),
angle_offset = np.clip(math.degrees(x[States.ANGLE_OFFSET].item() + x[States.ANGLE_OFFSET_FAST].item()),
angle_offset - MAX_ANGLE_OFFSET_DELTA, angle_offset + MAX_ANGLE_OFFSET_DELTA)
roll = clip(float(x[States.ROAD_ROLL].item()), roll - ROLL_MAX_DELTA, roll + ROLL_MAX_DELTA)
roll = np.clip(float(x[States.ROAD_ROLL].item()), roll - ROLL_MAX_DELTA, roll + ROLL_MAX_DELTA)
roll_std = float(P[States.ROAD_ROLL].item())
if learner.active and learner.speed > LOW_ACTIVE_SPEED:
# Account for the opposite signs of the yaw rates
@ -226,9 +225,9 @@ def main():
liveParameters.sensorValid = sensors_valid
liveParameters.steerRatio = float(x[States.STEER_RATIO].item())
liveParameters.stiffnessFactor = float(x[States.STIFFNESS].item())
liveParameters.roll = roll
liveParameters.angleOffsetAverageDeg = angle_offset_average
liveParameters.angleOffsetDeg = angle_offset
liveParameters.roll = float(roll)
liveParameters.angleOffsetAverageDeg = float(angle_offset_average)
liveParameters.angleOffsetDeg = float(angle_offset)
liveParameters.valid = all((
avg_offset_valid,
total_offset_valid,

@ -1,9 +1,9 @@
from math import atan2
import numpy as np
from cereal import car, log
import cereal.messaging as messaging
from openpilot.selfdrive.selfdrived.events import Events
from openpilot.common.numpy_fast import interp
from openpilot.common.realtime import DT_DMON
from openpilot.common.filter_simple import FirstOrderFilter
from openpilot.common.stat_live import RunningStatFilter
@ -205,10 +205,10 @@ class DriverMonitoring:
bp = model_data.meta.disengagePredictions.brakeDisengageProbs[0] # brake disengage prob in next 2s
k1 = max(-0.00156*((car_speed-16)**2)+0.6, 0.2)
bp_normal = max(min(bp / k1, 0.5),0)
self.pose.cfactor_pitch = interp(bp_normal, [0, 0.5],
self.pose.cfactor_pitch = np.interp(bp_normal, [0, 0.5],
[self.settings._POSE_PITCH_THRESHOLD_SLACK,
self.settings._POSE_PITCH_THRESHOLD_STRICT]) / self.settings._POSE_PITCH_THRESHOLD
self.pose.cfactor_yaw = interp(bp_normal, [0, 0.5],
self.pose.cfactor_yaw = np.interp(bp_normal, [0, 0.5],
[self.settings._POSE_YAW_THRESHOLD_SLACK,
self.settings._POSE_YAW_THRESHOLD_STRICT]) / self.settings._POSE_YAW_THRESHOLD

@ -121,7 +121,7 @@ class Plant:
ss.selfdriveState.personality = self.personality
control.controlsState.forceDecel = self.force_decel
car_state.carState.vEgo = float(self.speed)
car_state.carState.standstill = self.speed < 0.01
car_state.carState.standstill = bool(self.speed < 0.01)
car_state.carState.vCruise = float(v_cruise * 3.6)
car_control.carControl.orientationNED = [0., float(pitch), 0.]

@ -1,8 +1,8 @@
#!/usr/bin/env python3
import numpy as np
from abc import ABC, abstractmethod
from openpilot.common.realtime import DT_HW
from openpilot.common.numpy_fast import interp
from openpilot.common.swaglog import cloudlog
from openpilot.common.pid import PIDController
@ -30,7 +30,7 @@ class TiciFanController(BaseFanController):
error = 70 - cur_temp
fan_pwr_out = -int(self.controller.update(
error=error,
feedforward=interp(cur_temp, [60.0, 100.0], [0, -100])
feedforward=np.interp(cur_temp, [60.0, 100.0], [0, -100])
))
self.last_ignition = ignition

@ -2,10 +2,10 @@
import os
import argparse
import threading
import numpy as np
from inputs import UnpluggedError, get_gamepad
from cereal import messaging
from openpilot.common.numpy_fast import interp, clip
from openpilot.common.params import Params
from openpilot.common.realtime import Ratekeeper
from openpilot.system.hardware import HARDWARE
@ -34,7 +34,7 @@ class Keyboard:
elif key in self.axes_map:
axis = self.axes_map[key]
incr = self.axis_increment if key in ['w', 'a'] else -self.axis_increment
self.axes_values[axis] = clip(self.axes_values[axis] + incr, -1, 1)
self.axes_values[axis] = np.clip(self.axes_values[axis] + incr, -1, 1)
else:
return False
return True
@ -83,7 +83,7 @@ class Joystick:
self.max_axis_value[event[0]] = max(event[1], self.max_axis_value[event[0]])
self.min_axis_value[event[0]] = min(event[1], self.min_axis_value[event[0]])
norm = -interp(event[1], [self.min_axis_value[event[0]], self.max_axis_value[event[0]]], [-1., 1.])
norm = -np.interp(event[1], [self.min_axis_value[event[0]], self.max_axis_value[event[0]]], [-1., 1.])
norm = norm if abs(norm) > 0.03 else 0. # center can be noisy, deadzone of 3%
self.axes_values[event[0]] = EXPO * norm ** 3 + (1 - EXPO) * norm # less action near center for fine control
else:

@ -1,9 +1,9 @@
#!/usr/bin/env python3
import math
import numpy as np
from cereal import messaging, car
from openpilot.common.numpy_fast import clip
from openpilot.common.realtime import DT_CTRL, Ratekeeper
from openpilot.common.params import Params
from openpilot.common.swaglog import cloudlog
@ -45,13 +45,13 @@ def joystickd_thread():
joystick_axes = [0.0, 0.0]
if CC.longActive:
actuators.accel = 4.0 * clip(joystick_axes[0], -1, 1)
actuators.accel = 4.0 * np.clip(joystick_axes[0], -1, 1)
if CC.latActive:
max_curvature = MAX_LAT_ACCEL / max(sm['carState'].vEgo ** 2, 5)
max_angle = math.degrees(VM.get_steer_from_curvature(max_curvature, sm['carState'].vEgo, sm['liveParameters'].roll))
actuators.steer = clip(joystick_axes[1], -1, 1)
actuators.steer = np.clip(joystick_axes[1], -1, 1)
actuators.steeringAngleDeg, actuators.curvature = actuators.steer * max_angle, actuators.steer * -max_curvature
pm.send('carControl', cc_msg)

@ -1,6 +1,7 @@
import signal
import threading
import functools
import numpy as np
from collections import namedtuple
from enum import Enum
@ -9,7 +10,6 @@ from abc import ABC, abstractmethod
from opendbc.car.honda.values import CruiseButtons
from openpilot.common.params import Params
from openpilot.common.numpy_fast import clip
from openpilot.common.realtime import Ratekeeper
from openpilot.selfdrive.test.helpers import set_params_enabled
from openpilot.tools.sim.lib.common import SimulatorState, World
@ -173,8 +173,8 @@ Ignition: {self.simulator_state.ignition} Engaged: {self.simulator_state.is_enga
self.simulator_state.is_engaged = self.simulated_car.sm['selfdriveState'].active
if self.simulator_state.is_engaged:
throttle_op = clip(self.simulated_car.sm['carControl'].actuators.accel / 1.6, 0.0, 1.0)
brake_op = clip(-self.simulated_car.sm['carControl'].actuators.accel / 4.0, 0.0, 1.0)
throttle_op = np.clip(self.simulated_car.sm['carControl'].actuators.accel / 1.6, 0.0, 1.0)
brake_op = np.clip(-self.simulated_car.sm['carControl'].actuators.accel / 4.0, 0.0, 1.0)
steer_op = self.simulated_car.sm['carControl'].actuators.steeringAngleDeg
self.past_startup_engaged = True

Loading…
Cancel
Save