Space Lab Model 🛰️ (#35804)

* 95c34be5-4fa1-4875-8b1d-fb7162140f10/400

* 660235c5-1647-40c4-8493-880de8f662d0/400
pull/35813/head
YassineYousfi 2 weeks ago committed by GitHub
parent 09d8327a14
commit 938981dce9
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
  1. 4
      selfdrive/modeld/models/driving_policy.onnx
  2. 4
      selfdrive/modeld/models/driving_vision.onnx
  3. 6
      selfdrive/modeld/parse_model_outputs.py

@ -1,3 +1,3 @@
version https://git-lfs.github.com/spec/v1 version https://git-lfs.github.com/spec/v1
oid sha256:ef059460a95076f9a8600abb8c9d56c8c3b7384505b158064e2e875458b965bb oid sha256:02cf21ce7e9784c6009cc32a6f1ea22482911897b6d944419477973284052716
size 15701037 size 15583374

@ -1,3 +1,3 @@
version https://git-lfs.github.com/spec/v1 version https://git-lfs.github.com/spec/v1
oid sha256:afee02876ed51f21883e731990a252fd57afda6a78700c41fbf22d8cb288b4b5 oid sha256:c824f68646a3b94f117f01c70dc8316fb466e05fbd42ccdba440b8a8dc86914b
size 46147818 size 46265993

@ -93,6 +93,9 @@ class Parser:
self.parse_binary_crossentropy('lane_lines_prob', outs) self.parse_binary_crossentropy('lane_lines_prob', outs)
self.parse_categorical_crossentropy('desire_pred', outs, out_shape=(ModelConstants.DESIRE_PRED_LEN,ModelConstants.DESIRE_PRED_WIDTH)) self.parse_categorical_crossentropy('desire_pred', outs, out_shape=(ModelConstants.DESIRE_PRED_LEN,ModelConstants.DESIRE_PRED_WIDTH))
self.parse_binary_crossentropy('meta', outs) self.parse_binary_crossentropy('meta', outs)
self.parse_binary_crossentropy('lead_prob', outs)
self.parse_mdn('lead', outs, in_N=ModelConstants.LEAD_MHP_N, out_N=ModelConstants.LEAD_MHP_SELECTION,
out_shape=(ModelConstants.LEAD_TRAJ_LEN,ModelConstants.LEAD_WIDTH))
return outs return outs
def parse_policy_outputs(self, outs: dict[str, np.ndarray]) -> dict[str, np.ndarray]: def parse_policy_outputs(self, outs: dict[str, np.ndarray]) -> dict[str, np.ndarray]:
@ -103,9 +106,6 @@ class Parser:
if 'desired_curvature' in outs: if 'desired_curvature' in outs:
self.parse_mdn('desired_curvature', outs, in_N=0, out_N=0, out_shape=(ModelConstants.DESIRED_CURV_WIDTH,)) self.parse_mdn('desired_curvature', outs, in_N=0, out_N=0, out_shape=(ModelConstants.DESIRED_CURV_WIDTH,))
self.parse_categorical_crossentropy('desire_state', outs, out_shape=(ModelConstants.DESIRE_PRED_WIDTH,)) self.parse_categorical_crossentropy('desire_state', outs, out_shape=(ModelConstants.DESIRE_PRED_WIDTH,))
self.parse_binary_crossentropy('lead_prob', outs)
self.parse_mdn('lead', outs, in_N=ModelConstants.LEAD_MHP_N, out_N=ModelConstants.LEAD_MHP_SELECTION,
out_shape=(ModelConstants.LEAD_TRAJ_LEN,ModelConstants.LEAD_WIDTH))
return outs return outs
def parse_outputs(self, outs: dict[str, np.ndarray]) -> dict[str, np.ndarray]: def parse_outputs(self, outs: dict[str, np.ndarray]) -> dict[str, np.ndarray]:

Loading…
Cancel
Save