|
|
@ -20,7 +20,6 @@ from laika.raw_gnss import GNSSMeasurement, calc_pos_fix, correct_measurements, |
|
|
|
from selfdrive.locationd.models.constants import GENERATED_DIR, ObservationKind |
|
|
|
from selfdrive.locationd.models.constants import GENERATED_DIR, ObservationKind |
|
|
|
from selfdrive.locationd.models.gnss_kf import GNSSKalman |
|
|
|
from selfdrive.locationd.models.gnss_kf import GNSSKalman |
|
|
|
from selfdrive.locationd.models.gnss_kf import States as GStates |
|
|
|
from selfdrive.locationd.models.gnss_kf import States as GStates |
|
|
|
import common.transformations.coordinates as coord |
|
|
|
|
|
|
|
from system.swaglog import cloudlog |
|
|
|
from system.swaglog import cloudlog |
|
|
|
|
|
|
|
|
|
|
|
MAX_TIME_GAP = 10 |
|
|
|
MAX_TIME_GAP = 10 |
|
|
@ -94,15 +93,12 @@ class Laikad: |
|
|
|
pos_std = np.sqrt(abs(self.gnss_kf.P[GStates.ECEF_POS].diagonal())).tolist() |
|
|
|
pos_std = np.sqrt(abs(self.gnss_kf.P[GStates.ECEF_POS].diagonal())).tolist() |
|
|
|
vel_std = np.sqrt(abs(self.gnss_kf.P[GStates.ECEF_VELOCITY].diagonal())).tolist() |
|
|
|
vel_std = np.sqrt(abs(self.gnss_kf.P[GStates.ECEF_VELOCITY].diagonal())).tolist() |
|
|
|
|
|
|
|
|
|
|
|
bearing_deg, bearing_std = get_bearing_from_gnss(ecef_pos, ecef_vel, vel_std) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
meas_msgs = [create_measurement_msg(m) for m in corrected_measurements] |
|
|
|
meas_msgs = [create_measurement_msg(m) for m in corrected_measurements] |
|
|
|
dat = messaging.new_message("gnssMeasurements") |
|
|
|
dat = messaging.new_message("gnssMeasurements") |
|
|
|
measurement_msg = log.LiveLocationKalman.Measurement.new_message |
|
|
|
measurement_msg = log.LiveLocationKalman.Measurement.new_message |
|
|
|
dat.gnssMeasurements = { |
|
|
|
dat.gnssMeasurements = { |
|
|
|
"positionECEF": measurement_msg(value=ecef_pos, std=pos_std, valid=kf_valid), |
|
|
|
"positionECEF": measurement_msg(value=ecef_pos, std=pos_std, valid=kf_valid), |
|
|
|
"velocityECEF": measurement_msg(value=ecef_vel, std=vel_std, valid=kf_valid), |
|
|
|
"velocityECEF": measurement_msg(value=ecef_vel, std=vel_std, valid=kf_valid), |
|
|
|
"bearingDeg": measurement_msg(value=[bearing_deg], std=[bearing_std], valid=kf_valid), |
|
|
|
|
|
|
|
"ubloxMonoTime": ublox_mono_time, |
|
|
|
"ubloxMonoTime": ublox_mono_time, |
|
|
|
"correctedMeasurements": meas_msgs |
|
|
|
"correctedMeasurements": meas_msgs |
|
|
|
} |
|
|
|
} |
|
|
@ -211,16 +207,6 @@ def kf_add_observations(gnss_kf: GNSSKalman, t: float, measurements: List[GNSSMe |
|
|
|
gnss_kf.predict_and_observe(t, kind, data) |
|
|
|
gnss_kf.predict_and_observe(t, kind, data) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_bearing_from_gnss(ecef_pos, ecef_vel, vel_std): |
|
|
|
|
|
|
|
# init orientation with direction of velocity |
|
|
|
|
|
|
|
converter = coord.LocalCoord.from_ecef(ecef_pos) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ned_vel = np.einsum('ij,j ->i', converter.ned_from_ecef_matrix, ecef_vel) |
|
|
|
|
|
|
|
bearing = np.arctan2(ned_vel[1], ned_vel[0]) |
|
|
|
|
|
|
|
bearing_std = np.arctan2(np.linalg.norm(vel_std), np.linalg.norm(ned_vel)) |
|
|
|
|
|
|
|
return float(np.rad2deg(bearing)), float(bearing_std) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class CacheSerializer(json.JSONEncoder): |
|
|
|
class CacheSerializer(json.JSONEncoder): |
|
|
|
|
|
|
|
|
|
|
|
def default(self, o): |
|
|
|
def default(self, o): |
|
|
|