|
|
|
@ -196,14 +196,14 @@ class Localizer(): |
|
|
|
|
orientation_ned = ned_euler_from_ecef(ecef_pos, orientation_ecef) |
|
|
|
|
orientation_ned_gps = np.array([0, 0, np.radians(log.bearing)]) |
|
|
|
|
orientation_error = np.mod(orientation_ned - orientation_ned_gps - np.pi, 2*np.pi) - np.pi |
|
|
|
|
initial_pose_ecef_quat = quat_from_euler(ecef_euler_from_ned(ecef_pos, orientation_ned_gps)) |
|
|
|
|
if np.linalg.norm(ecef_vel) > 5 and np.linalg.norm(orientation_error) > 1: |
|
|
|
|
cloudlog.error("Locationd vs ubloxLocation orientation difference too large, kalman reset") |
|
|
|
|
initial_pose_ecef_quat = quat_from_euler(ecef_euler_from_ned(ecef_pos, orientation_ned_gps)) |
|
|
|
|
self.reset_kalman(init_orient=initial_pose_ecef_quat) |
|
|
|
|
self.reset_kalman(init_pos=ecef_pos, init_orient=initial_pose_ecef_quat) |
|
|
|
|
self.update_kalman(current_time, ObservationKind.ECEF_ORIENTATION_FROM_GPS, initial_pose_ecef_quat) |
|
|
|
|
elif gps_est_error > 50: |
|
|
|
|
cloudlog.error("Locationd vs ubloxLocation position difference too large, kalman reset") |
|
|
|
|
self.reset_kalman() |
|
|
|
|
self.reset_kalman(init_pos=ecef_pos, init_orient=initial_pose_ecef_quat) |
|
|
|
|
|
|
|
|
|
self.update_kalman(current_time, ObservationKind.ECEF_POS, ecef_pos, R=ecef_pos_R) |
|
|
|
|
self.update_kalman(current_time, ObservationKind.ECEF_VEL, ecef_vel, R=ecef_vel_R) |
|
|
|
@ -267,12 +267,14 @@ class Localizer(): |
|
|
|
|
self.calib_from_device = self.device_from_calib.T |
|
|
|
|
self.calibrated = log.calStatus == 1 |
|
|
|
|
|
|
|
|
|
def reset_kalman(self, current_time=None, init_orient=None): |
|
|
|
|
def reset_kalman(self, current_time=None, init_orient=None, init_pos=None): |
|
|
|
|
self.filter_time = current_time |
|
|
|
|
init_x = LiveKalman.initial_x.copy() |
|
|
|
|
# too nonlinear to init on completely wrong |
|
|
|
|
if init_orient is not None: |
|
|
|
|
init_x[3:7] = init_orient |
|
|
|
|
if init_pos is not None: |
|
|
|
|
init_x[:3] = init_pos |
|
|
|
|
self.kf.init_state(init_x, covs=np.diag(LiveKalman.initial_P_diag), filter_time=current_time) |
|
|
|
|
|
|
|
|
|
self.observation_buffer = [] |
|
|
|
|