Revert torque control (#24565)
* torque reversal start * Fix carmodel tests * Update ref * update ref * Elif is better than ifpull/24577/head
parent
0fc4b4df98
commit
9f8b03753d
9 changed files with 111 additions and 10 deletions
@ -0,0 +1,84 @@ |
||||
import math |
||||
import numpy as np |
||||
|
||||
from common.numpy_fast import clip |
||||
from common.realtime import DT_CTRL |
||||
from cereal import log |
||||
from selfdrive.controls.lib.latcontrol import LatControl, MIN_STEER_SPEED |
||||
|
||||
|
||||
class LatControlLQR(LatControl): |
||||
def __init__(self, CP, CI): |
||||
super().__init__(CP, CI) |
||||
self.scale = CP.lateralTuning.lqr.scale |
||||
self.ki = CP.lateralTuning.lqr.ki |
||||
|
||||
self.A = np.array(CP.lateralTuning.lqr.a).reshape((2, 2)) |
||||
self.B = np.array(CP.lateralTuning.lqr.b).reshape((2, 1)) |
||||
self.C = np.array(CP.lateralTuning.lqr.c).reshape((1, 2)) |
||||
self.K = np.array(CP.lateralTuning.lqr.k).reshape((1, 2)) |
||||
self.L = np.array(CP.lateralTuning.lqr.l).reshape((2, 1)) |
||||
self.dc_gain = CP.lateralTuning.lqr.dcGain |
||||
|
||||
self.x_hat = np.array([[0], [0]]) |
||||
self.i_unwind_rate = 0.3 * DT_CTRL |
||||
self.i_rate = 1.0 * DT_CTRL |
||||
|
||||
self.reset() |
||||
|
||||
def reset(self): |
||||
super().reset() |
||||
self.i_lqr = 0.0 |
||||
|
||||
def update(self, active, CS, VM, params, last_actuators, desired_curvature, desired_curvature_rate, llk): |
||||
lqr_log = log.ControlsState.LateralLQRState.new_message() |
||||
|
||||
torque_scale = (0.45 + CS.vEgo / 60.0)**2 # Scale actuator model with speed |
||||
|
||||
# Subtract offset. Zero angle should correspond to zero torque |
||||
steering_angle_no_offset = CS.steeringAngleDeg - params.angleOffsetAverageDeg |
||||
|
||||
desired_angle = math.degrees(VM.get_steer_from_curvature(-desired_curvature, CS.vEgo, params.roll)) |
||||
|
||||
instant_offset = params.angleOffsetDeg - params.angleOffsetAverageDeg |
||||
desired_angle += instant_offset # Only add offset that originates from vehicle model errors |
||||
lqr_log.steeringAngleDesiredDeg = desired_angle |
||||
|
||||
# Update Kalman filter |
||||
angle_steers_k = float(self.C.dot(self.x_hat)) |
||||
e = steering_angle_no_offset - angle_steers_k |
||||
self.x_hat = self.A.dot(self.x_hat) + self.B.dot(CS.steeringTorqueEps / torque_scale) + self.L.dot(e) |
||||
|
||||
if CS.vEgo < MIN_STEER_SPEED or not active: |
||||
lqr_log.active = False |
||||
lqr_output = 0. |
||||
output_steer = 0. |
||||
self.reset() |
||||
else: |
||||
lqr_log.active = True |
||||
|
||||
# LQR |
||||
u_lqr = float(desired_angle / self.dc_gain - self.K.dot(self.x_hat)) |
||||
lqr_output = torque_scale * u_lqr / self.scale |
||||
|
||||
# Integrator |
||||
if CS.steeringPressed: |
||||
self.i_lqr -= self.i_unwind_rate * float(np.sign(self.i_lqr)) |
||||
else: |
||||
error = desired_angle - angle_steers_k |
||||
i = self.i_lqr + self.ki * self.i_rate * error |
||||
control = lqr_output + i |
||||
|
||||
if (error >= 0 and (control <= self.steer_max or i < 0.0)) or \ |
||||
(error <= 0 and (control >= -self.steer_max or i > 0.0)): |
||||
self.i_lqr = i |
||||
|
||||
output_steer = lqr_output + self.i_lqr |
||||
output_steer = clip(output_steer, -self.steer_max, self.steer_max) |
||||
|
||||
lqr_log.steeringAngleDeg = angle_steers_k |
||||
lqr_log.i = self.i_lqr |
||||
lqr_log.output = output_steer |
||||
lqr_log.lqrOutput = lqr_output |
||||
lqr_log.saturated = self._check_saturation(self.steer_max - abs(output_steer) < 1e-3, CS) |
||||
return output_steer, desired_angle, lqr_log |
@ -1 +1 @@ |
||||
16a3e2f9ef2bf013bc71bed6085a5296eb276f85 |
||||
b8c35486e8354713221d4237e97e5abced6f5228 |
||||
|
Loading…
Reference in new issue