|  |  |  | @ -9,8 +9,8 @@ from selfdrive.locationd.kalman.models.loc_kf import parse_pr, parse_prr | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  | class States(): | 
			
		
	
		
			
				
					|  |  |  |  |   ECEF_POS = slice(0,3) # x, y and z in ECEF in meters | 
			
		
	
		
			
				
					|  |  |  |  |   ECEF_VELOCITY = slice(3,6) | 
			
		
	
		
			
				
					|  |  |  |  |   ECEF_POS = slice(0, 3)  # x, y and z in ECEF in meters | 
			
		
	
		
			
				
					|  |  |  |  |   ECEF_VELOCITY = slice(3, 6) | 
			
		
	
		
			
				
					|  |  |  |  |   CLOCK_BIAS = slice(6, 7)  # clock bias in light-meters, | 
			
		
	
		
			
				
					|  |  |  |  |   CLOCK_DRIFT = slice(7, 8)  # clock drift in light-meters/s, | 
			
		
	
		
			
				
					|  |  |  |  |   CLOCK_ACCELERATION = slice(8, 9)  # clock acceleration in light-meters/s**2 | 
			
		
	
	
		
			
				
					|  |  |  | @ -38,8 +38,7 @@ class GNSSKalman(): | 
			
		
	
		
			
				
					|  |  |  |  |                (.1)**2, (0)**2, (0.01)**2, | 
			
		
	
		
			
				
					|  |  |  |  |                .1**2, (.01)**2]) | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |   maha_test_kinds = [] #ObservationKind.PSEUDORANGE_RATE, ObservationKind.PSEUDORANGE, ObservationKind.PSEUDORANGE_GLONASS] | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |   maha_test_kinds = []  # ObservationKind.PSEUDORANGE_RATE, ObservationKind.PSEUDORANGE, ObservationKind.PSEUDORANGE_GLONASS] | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |   @staticmethod | 
			
		
	
		
			
				
					|  |  |  |  |   def generate_code(): | 
			
		
	
	
		
			
				
					|  |  |  | @ -51,23 +50,22 @@ class GNSSKalman(): | 
			
		
	
		
			
				
					|  |  |  |  |     # state variables | 
			
		
	
		
			
				
					|  |  |  |  |     state_sym = sp.MatrixSymbol('state', dim_state, 1) | 
			
		
	
		
			
				
					|  |  |  |  |     state = sp.Matrix(state_sym) | 
			
		
	
		
			
				
					|  |  |  |  |     x,y,z = state[0:3,:] | 
			
		
	
		
			
				
					|  |  |  |  |     v = state[3:6,:] | 
			
		
	
		
			
				
					|  |  |  |  |     x, y, z = state[0:3, :] | 
			
		
	
		
			
				
					|  |  |  |  |     v = state[3:6, :] | 
			
		
	
		
			
				
					|  |  |  |  |     vx, vy, vz = v | 
			
		
	
		
			
				
					|  |  |  |  |     cb, cd, ca = state[6:9,:] | 
			
		
	
		
			
				
					|  |  |  |  |     glonass_bias, glonass_freq_slope = state[9:11,:] | 
			
		
	
		
			
				
					|  |  |  |  |     cb, cd, ca = state[6:9, :] | 
			
		
	
		
			
				
					|  |  |  |  |     glonass_bias, glonass_freq_slope = state[9:11, :] | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |     dt = sp.Symbol('dt') | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |     state_dot = sp.Matrix(np.zeros((dim_state, 1))) | 
			
		
	
		
			
				
					|  |  |  |  |     state_dot[:3,:] = v | 
			
		
	
		
			
				
					|  |  |  |  |     state_dot[6,0] = cd | 
			
		
	
		
			
				
					|  |  |  |  |     state_dot[7,0] = ca | 
			
		
	
		
			
				
					|  |  |  |  |     state_dot[:3, :] = v | 
			
		
	
		
			
				
					|  |  |  |  |     state_dot[6, 0] = cd | 
			
		
	
		
			
				
					|  |  |  |  |     state_dot[7, 0] = ca | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |     # Basic descretization, 1st order integrator | 
			
		
	
		
			
				
					|  |  |  |  |     # Can be pretty bad if dt is big | 
			
		
	
		
			
				
					|  |  |  |  |     f_sym = state + dt*state_dot | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |     f_sym = state + dt * state_dot | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |     # | 
			
		
	
		
			
				
					|  |  |  |  |     # Observation functions | 
			
		
	
	
		
			
				
					|  |  |  | @ -85,23 +83,27 @@ class GNSSKalman(): | 
			
		
	
		
			
				
					|  |  |  |  |     los_x, los_y, los_z = sat_los_sym | 
			
		
	
		
			
				
					|  |  |  |  |     orb_x, orb_y, orb_z = orb_epos_sym | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |     h_pseudorange_sym = sp.Matrix([sp.sqrt( | 
			
		
	
		
			
				
					|  |  |  |  |     h_pseudorange_sym = sp.Matrix([ | 
			
		
	
		
			
				
					|  |  |  |  |       sp.sqrt( | 
			
		
	
		
			
				
					|  |  |  |  |         (x - sat_x)**2 + | 
			
		
	
		
			
				
					|  |  |  |  |         (y - sat_y)**2 + | 
			
		
	
		
			
				
					|  |  |  |  |                                     (z - sat_z)**2) + | 
			
		
	
		
			
				
					|  |  |  |  |                                     cb]) | 
			
		
	
		
			
				
					|  |  |  |  |         (z - sat_z)**2 | 
			
		
	
		
			
				
					|  |  |  |  |       ) + cb | 
			
		
	
		
			
				
					|  |  |  |  |     ]) | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |     h_pseudorange_glonass_sym = sp.Matrix([sp.sqrt( | 
			
		
	
		
			
				
					|  |  |  |  |     h_pseudorange_glonass_sym = sp.Matrix([ | 
			
		
	
		
			
				
					|  |  |  |  |       sp.sqrt( | 
			
		
	
		
			
				
					|  |  |  |  |         (x - sat_x)**2 + | 
			
		
	
		
			
				
					|  |  |  |  |         (y - sat_y)**2 + | 
			
		
	
		
			
				
					|  |  |  |  |                                     (z - sat_z)**2) + | 
			
		
	
		
			
				
					|  |  |  |  |                                     cb + glonass_bias + glonass_freq_slope*glonass_freq]) | 
			
		
	
		
			
				
					|  |  |  |  |         (z - sat_z)**2 | 
			
		
	
		
			
				
					|  |  |  |  |       ) + cb + glonass_bias + glonass_freq_slope * glonass_freq | 
			
		
	
		
			
				
					|  |  |  |  |     ]) | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |     los_vector = (sp.Matrix(sat_pos_vel_sym[0:3]) - sp.Matrix([x, y, z])) | 
			
		
	
		
			
				
					|  |  |  |  |     los_vector = los_vector / sp.sqrt(los_vector[0]**2 + los_vector[1]**2 + los_vector[2]**2) | 
			
		
	
		
			
				
					|  |  |  |  |     h_pseudorange_rate_sym = sp.Matrix([los_vector[0]*(sat_vx - vx) + | 
			
		
	
		
			
				
					|  |  |  |  |                                           los_vector[1]*(sat_vy - vy) + | 
			
		
	
		
			
				
					|  |  |  |  |                                           los_vector[2]*(sat_vz - vz) + | 
			
		
	
		
			
				
					|  |  |  |  |     h_pseudorange_rate_sym = sp.Matrix([los_vector[0] * (sat_vx - vx) + | 
			
		
	
		
			
				
					|  |  |  |  |                                         los_vector[1] * (sat_vy - vy) + | 
			
		
	
		
			
				
					|  |  |  |  |                                         los_vector[2] * (sat_vz - vz) + | 
			
		
	
		
			
				
					|  |  |  |  |                                         cd]) | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |     obs_eqs = [[h_pseudorange_sym, ObservationKind.PSEUDORANGE_GPS, sat_pos_freq_sym], | 
			
		
	
	
		
			
				
					|  |  |  | @ -155,9 +157,9 @@ class GNSSKalman(): | 
			
		
	
		
			
				
					|  |  |  |  |     z = np.zeros((len(meas), 1)) | 
			
		
	
		
			
				
					|  |  |  |  |     for i, m in enumerate(meas): | 
			
		
	
		
			
				
					|  |  |  |  |       z_i, R_i, sat_pos_freq_i = parse_pr(m) | 
			
		
	
		
			
				
					|  |  |  |  |       sat_pos_freq[i,:] = sat_pos_freq_i | 
			
		
	
		
			
				
					|  |  |  |  |       z[i,:] = z_i | 
			
		
	
		
			
				
					|  |  |  |  |       R[i,:,:] = R_i | 
			
		
	
		
			
				
					|  |  |  |  |       sat_pos_freq[i, :] = sat_pos_freq_i | 
			
		
	
		
			
				
					|  |  |  |  |       z[i, :] = z_i | 
			
		
	
		
			
				
					|  |  |  |  |       R[i, :, :] = R_i | 
			
		
	
		
			
				
					|  |  |  |  |     return self.filter.predict_and_update_batch(t, kind, z, R, sat_pos_freq) | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |   def predict_and_update_pseudorange_rate(self, meas, t, kind): | 
			
		
	
	
		
			
				
					|  |  |  | @ -167,7 +169,7 @@ class GNSSKalman(): | 
			
		
	
		
			
				
					|  |  |  |  |     for i, m in enumerate(meas): | 
			
		
	
		
			
				
					|  |  |  |  |       z_i, R_i, sat_pos_vel_i = parse_prr(m) | 
			
		
	
		
			
				
					|  |  |  |  |       sat_pos_vel[i] = sat_pos_vel_i | 
			
		
	
		
			
				
					|  |  |  |  |       R[i,:,:] = R_i | 
			
		
	
		
			
				
					|  |  |  |  |       R[i, :, :] = R_i | 
			
		
	
		
			
				
					|  |  |  |  |       z[i, :] = z_i | 
			
		
	
		
			
				
					|  |  |  |  |     return self.filter.predict_and_update_batch(t, kind, z, R, sat_pos_vel) | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
	
		
			
				
					|  |  |  | 
 |