|
|
|
@ -9,13 +9,13 @@ from selfdrive.locationd.kalman.models.loc_kf import parse_pr, parse_prr |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class States(): |
|
|
|
|
ECEF_POS = slice(0,3) # x, y and z in ECEF in meters |
|
|
|
|
ECEF_VELOCITY = slice(3,6) |
|
|
|
|
CLOCK_BIAS = slice(6, 7) # clock bias in light-meters, |
|
|
|
|
CLOCK_DRIFT = slice(7, 8) # clock drift in light-meters/s, |
|
|
|
|
CLOCK_ACCELERATION = slice(8, 9) # clock acceleration in light-meters/s**2 |
|
|
|
|
GLONASS_BIAS = slice(9, 10) # clock drift in light-meters/s, |
|
|
|
|
GLONASS_FREQ_SLOPE = slice(10, 11) # GLONASS bias in m expressed as bias + freq_num*freq_slope |
|
|
|
|
ECEF_POS = slice(0, 3) # x, y and z in ECEF in meters |
|
|
|
|
ECEF_VELOCITY = slice(3, 6) |
|
|
|
|
CLOCK_BIAS = slice(6, 7) # clock bias in light-meters, |
|
|
|
|
CLOCK_DRIFT = slice(7, 8) # clock drift in light-meters/s, |
|
|
|
|
CLOCK_ACCELERATION = slice(8, 9) # clock acceleration in light-meters/s**2 |
|
|
|
|
GLONASS_BIAS = slice(9, 10) # clock drift in light-meters/s, |
|
|
|
|
GLONASS_FREQ_SLOPE = slice(10, 11) # GLONASS bias in m expressed as bias + freq_num*freq_slope |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class GNSSKalman(): |
|
|
|
@ -38,8 +38,7 @@ class GNSSKalman(): |
|
|
|
|
(.1)**2, (0)**2, (0.01)**2, |
|
|
|
|
.1**2, (.01)**2]) |
|
|
|
|
|
|
|
|
|
maha_test_kinds = [] #ObservationKind.PSEUDORANGE_RATE, ObservationKind.PSEUDORANGE, ObservationKind.PSEUDORANGE_GLONASS] |
|
|
|
|
|
|
|
|
|
maha_test_kinds = [] # ObservationKind.PSEUDORANGE_RATE, ObservationKind.PSEUDORANGE, ObservationKind.PSEUDORANGE_GLONASS] |
|
|
|
|
|
|
|
|
|
@staticmethod |
|
|
|
|
def generate_code(): |
|
|
|
@ -51,23 +50,22 @@ class GNSSKalman(): |
|
|
|
|
# state variables |
|
|
|
|
state_sym = sp.MatrixSymbol('state', dim_state, 1) |
|
|
|
|
state = sp.Matrix(state_sym) |
|
|
|
|
x,y,z = state[0:3,:] |
|
|
|
|
v = state[3:6,:] |
|
|
|
|
x, y, z = state[0:3, :] |
|
|
|
|
v = state[3:6, :] |
|
|
|
|
vx, vy, vz = v |
|
|
|
|
cb, cd, ca = state[6:9,:] |
|
|
|
|
glonass_bias, glonass_freq_slope = state[9:11,:] |
|
|
|
|
cb, cd, ca = state[6:9, :] |
|
|
|
|
glonass_bias, glonass_freq_slope = state[9:11, :] |
|
|
|
|
|
|
|
|
|
dt = sp.Symbol('dt') |
|
|
|
|
|
|
|
|
|
state_dot = sp.Matrix(np.zeros((dim_state, 1))) |
|
|
|
|
state_dot[:3,:] = v |
|
|
|
|
state_dot[6,0] = cd |
|
|
|
|
state_dot[7,0] = ca |
|
|
|
|
state_dot[:3, :] = v |
|
|
|
|
state_dot[6, 0] = cd |
|
|
|
|
state_dot[7, 0] = ca |
|
|
|
|
|
|
|
|
|
# Basic descretization, 1st order integrator |
|
|
|
|
# Can be pretty bad if dt is big |
|
|
|
|
f_sym = state + dt*state_dot |
|
|
|
|
|
|
|
|
|
f_sym = state + dt * state_dot |
|
|
|
|
|
|
|
|
|
# |
|
|
|
|
# Observation functions |
|
|
|
@ -85,29 +83,33 @@ class GNSSKalman(): |
|
|
|
|
los_x, los_y, los_z = sat_los_sym |
|
|
|
|
orb_x, orb_y, orb_z = orb_epos_sym |
|
|
|
|
|
|
|
|
|
h_pseudorange_sym = sp.Matrix([sp.sqrt( |
|
|
|
|
(x - sat_x)**2 + |
|
|
|
|
(y - sat_y)**2 + |
|
|
|
|
(z - sat_z)**2) + |
|
|
|
|
cb]) |
|
|
|
|
|
|
|
|
|
h_pseudorange_glonass_sym = sp.Matrix([sp.sqrt( |
|
|
|
|
(x - sat_x)**2 + |
|
|
|
|
(y - sat_y)**2 + |
|
|
|
|
(z - sat_z)**2) + |
|
|
|
|
cb + glonass_bias + glonass_freq_slope*glonass_freq]) |
|
|
|
|
h_pseudorange_sym = sp.Matrix([ |
|
|
|
|
sp.sqrt( |
|
|
|
|
(x - sat_x)**2 + |
|
|
|
|
(y - sat_y)**2 + |
|
|
|
|
(z - sat_z)**2 |
|
|
|
|
) + cb |
|
|
|
|
]) |
|
|
|
|
|
|
|
|
|
h_pseudorange_glonass_sym = sp.Matrix([ |
|
|
|
|
sp.sqrt( |
|
|
|
|
(x - sat_x)**2 + |
|
|
|
|
(y - sat_y)**2 + |
|
|
|
|
(z - sat_z)**2 |
|
|
|
|
) + cb + glonass_bias + glonass_freq_slope * glonass_freq |
|
|
|
|
]) |
|
|
|
|
|
|
|
|
|
los_vector = (sp.Matrix(sat_pos_vel_sym[0:3]) - sp.Matrix([x, y, z])) |
|
|
|
|
los_vector = los_vector / sp.sqrt(los_vector[0]**2 + los_vector[1]**2 + los_vector[2]**2) |
|
|
|
|
h_pseudorange_rate_sym = sp.Matrix([los_vector[0]*(sat_vx - vx) + |
|
|
|
|
los_vector[1]*(sat_vy - vy) + |
|
|
|
|
los_vector[2]*(sat_vz - vz) + |
|
|
|
|
cd]) |
|
|
|
|
h_pseudorange_rate_sym = sp.Matrix([los_vector[0] * (sat_vx - vx) + |
|
|
|
|
los_vector[1] * (sat_vy - vy) + |
|
|
|
|
los_vector[2] * (sat_vz - vz) + |
|
|
|
|
cd]) |
|
|
|
|
|
|
|
|
|
obs_eqs = [[h_pseudorange_sym, ObservationKind.PSEUDORANGE_GPS, sat_pos_freq_sym], |
|
|
|
|
[h_pseudorange_glonass_sym, ObservationKind.PSEUDORANGE_GLONASS, sat_pos_freq_sym], |
|
|
|
|
[h_pseudorange_rate_sym, ObservationKind.PSEUDORANGE_RATE_GPS, sat_pos_vel_sym], |
|
|
|
|
[h_pseudorange_rate_sym, ObservationKind.PSEUDORANGE_RATE_GLONASS, sat_pos_vel_sym]] |
|
|
|
|
[h_pseudorange_glonass_sym, ObservationKind.PSEUDORANGE_GLONASS, sat_pos_freq_sym], |
|
|
|
|
[h_pseudorange_rate_sym, ObservationKind.PSEUDORANGE_RATE_GPS, sat_pos_vel_sym], |
|
|
|
|
[h_pseudorange_rate_sym, ObservationKind.PSEUDORANGE_RATE_GLONASS, sat_pos_vel_sym]] |
|
|
|
|
|
|
|
|
|
gen_code(name, f_sym, dt, state_sym, obs_eqs, dim_state, dim_state, maha_test_kinds=maha_test_kinds) |
|
|
|
|
|
|
|
|
@ -155,9 +157,9 @@ class GNSSKalman(): |
|
|
|
|
z = np.zeros((len(meas), 1)) |
|
|
|
|
for i, m in enumerate(meas): |
|
|
|
|
z_i, R_i, sat_pos_freq_i = parse_pr(m) |
|
|
|
|
sat_pos_freq[i,:] = sat_pos_freq_i |
|
|
|
|
z[i,:] = z_i |
|
|
|
|
R[i,:,:] = R_i |
|
|
|
|
sat_pos_freq[i, :] = sat_pos_freq_i |
|
|
|
|
z[i, :] = z_i |
|
|
|
|
R[i, :, :] = R_i |
|
|
|
|
return self.filter.predict_and_update_batch(t, kind, z, R, sat_pos_freq) |
|
|
|
|
|
|
|
|
|
def predict_and_update_pseudorange_rate(self, meas, t, kind): |
|
|
|
@ -167,7 +169,7 @@ class GNSSKalman(): |
|
|
|
|
for i, m in enumerate(meas): |
|
|
|
|
z_i, R_i, sat_pos_vel_i = parse_prr(m) |
|
|
|
|
sat_pos_vel[i] = sat_pos_vel_i |
|
|
|
|
R[i,:,:] = R_i |
|
|
|
|
R[i, :, :] = R_i |
|
|
|
|
z[i, :] = z_i |
|
|
|
|
return self.filter.predict_and_update_batch(t, kind, z, R, sat_pos_vel) |
|
|
|
|
|
|
|
|
|