Long MPC cleanup (#22462)

* cleaner extrapolation

* some comments

* new ref

* more comments

* new ref
pull/22464/head
HaraldSchafer 4 years ago committed by GitHub
parent 590023c8f1
commit a4bc1bbb74
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 87
      selfdrive/controls/lib/longitudinal_mpc_lib/long_mpc.py
  2. 2
      selfdrive/test/process_replay/ref_commit

@ -1,6 +1,5 @@
#!/usr/bin/env python3 #!/usr/bin/env python3
import os import os
import math
import numpy as np import numpy as np
from common.realtime import sec_since_boot from common.realtime import sec_since_boot
@ -24,8 +23,6 @@ U_DIM = 1
COST_E_DIM = 3 COST_E_DIM = 3
COST_DIM = COST_E_DIM + 1 COST_DIM = COST_E_DIM + 1
CONSTR_DIM = 4 CONSTR_DIM = 4
MIN_ACCEL = -3.5
X_EGO_COST = 3. X_EGO_COST = 3.
X_EGO_E2E_COST = 10. X_EGO_E2E_COST = 10.
@ -34,8 +31,11 @@ J_EGO_COST = 10.
DANGER_ZONE_COST = 100. DANGER_ZONE_COST = 100.
CRASH_DISTANCE = .5 CRASH_DISTANCE = .5
LIMIT_COST = 1e6 LIMIT_COST = 1e6
T_IDXS = np.array(T_IDXS_LST) T_IDXS = np.array(T_IDXS_LST)
T_DIFFS = np.diff(T_IDXS, prepend=[0.])
MIN_ACCEL = -3.5
T_REACT = 1.8 T_REACT = 1.8
MAX_BRAKE = 9.81 MAX_BRAKE = 9.81
@ -113,6 +113,10 @@ def gen_long_mpc_solver():
desired_dist_comfort = get_safe_obstacle_distance(v_ego) desired_dist_comfort = get_safe_obstacle_distance(v_ego)
# The main cost in normal operation is how close you are to the "desired" distance
# from an obstacle at every timestep. This obstacle can be a lead car
# or other object. In e2e mode we can use x_position targets as a cost
# instead.
costs = [((x_obstacle - x_ego) - (desired_dist_comfort)) / (v_ego + 10.), costs = [((x_obstacle - x_ego) - (desired_dist_comfort)) / (v_ego + 10.),
x_ego, x_ego,
a_ego, a_ego,
@ -120,6 +124,9 @@ def gen_long_mpc_solver():
ocp.model.cost_y_expr = vertcat(*costs) ocp.model.cost_y_expr = vertcat(*costs)
ocp.model.cost_y_expr_e = vertcat(*costs[:-1]) ocp.model.cost_y_expr_e = vertcat(*costs[:-1])
# Constraints on speed, acceleration and desired distance to
# the obstacle, which is treated as a slack constraint so it
# behaves like an assymetrical cost.
constraints = vertcat((v_ego), constraints = vertcat((v_ego),
(a_ego - a_min), (a_ego - a_min),
(a_max - a_ego), (a_max - a_ego),
@ -131,10 +138,7 @@ def gen_long_mpc_solver():
ocp.constraints.x0 = x0 ocp.constraints.x0 = x0
ocp.parameter_values = np.array([-1.2, 1.2, 0.0]) ocp.parameter_values = np.array([-1.2, 1.2, 0.0])
# These constraints put hard limits on speed and # We put all constraint cost weights to 0 and only set them at runtime
# acceleration as well as giving an assymetrical
# cost on approaching a lead. We only use lower
# bounds with an L2 cost.
cost_weights = np.zeros(CONSTR_DIM) cost_weights = np.zeros(CONSTR_DIM)
ocp.cost.zl = cost_weights ocp.cost.zl = cost_weights
ocp.cost.Zl = cost_weights ocp.cost.Zl = cost_weights
@ -147,12 +151,17 @@ def gen_long_mpc_solver():
ocp.constraints.uh_e = 1e4*np.ones(CONSTR_DIM) ocp.constraints.uh_e = 1e4*np.ones(CONSTR_DIM)
ocp.constraints.idxsh = np.arange(CONSTR_DIM) ocp.constraints.idxsh = np.arange(CONSTR_DIM)
# The HPIPM solver can give decent solutions even when it is stopped early
# Which is critical for our purpose where the compute time is strictly bounded
# We use HPIPM in the SPEED_ABS mode, which ensures fastest runtime. This
# does not cause issues since the problem is well bounded.
ocp.solver_options.qp_solver = 'PARTIAL_CONDENSING_HPIPM' ocp.solver_options.qp_solver = 'PARTIAL_CONDENSING_HPIPM'
ocp.solver_options.hessian_approx = 'GAUSS_NEWTON' ocp.solver_options.hessian_approx = 'GAUSS_NEWTON'
ocp.solver_options.integrator_type = 'ERK' ocp.solver_options.integrator_type = 'ERK'
ocp.solver_options.nlp_solver_type = 'SQP_RTI' ocp.solver_options.nlp_solver_type = 'SQP_RTI'
# More iterations take too much time and less lead to inaccurate convergence in
# some situations. Ideally we would run just 1 iteration to ensure fixed runtime.
ocp.solver_options.qp_solver_iter_max = 4 ocp.solver_options.qp_solver_iter_max = 4
# set prediction horizon # set prediction horizon
@ -202,9 +211,11 @@ class LongitudinalMpc():
W = np.diag([X_EGO_COST, 0.0, A_EGO_COST, J_EGO_COST]) W = np.diag([X_EGO_COST, 0.0, A_EGO_COST, J_EGO_COST])
Ws = np.tile(W[None], reps=(N,1,1)) Ws = np.tile(W[None], reps=(N,1,1))
self.solver.cost_set_slice(0, N, 'W', Ws, api='old') self.solver.cost_set_slice(0, N, 'W', Ws, api='old')
#TODO hacky weights to keep behavior the same # Setting the slice without the copy make the array not contiguous,
self.solver.cost_set(N, 'W', (3./5.)*np.copy(W[:COST_E_DIM, :COST_E_DIM])) # causing issues with the C interface.
self.solver.cost_set(N, 'W', np.copy(W[:COST_E_DIM, :COST_E_DIM]))
# Set L2 slack cost on lower bound constraints
Zl = np.array([LIMIT_COST, LIMIT_COST, LIMIT_COST, DANGER_ZONE_COST]) Zl = np.array([LIMIT_COST, LIMIT_COST, LIMIT_COST, DANGER_ZONE_COST])
Zls = np.tile(Zl[None], reps=(N+1,1,1)) Zls = np.tile(Zl[None], reps=(N+1,1,1))
self.solver.cost_set_slice(0, N+1, 'Zl', Zls, api='old') self.solver.cost_set_slice(0, N+1, 'Zl', Zls, api='old')
@ -213,8 +224,11 @@ class LongitudinalMpc():
W = np.diag([0.0, X_EGO_E2E_COST, 0., J_EGO_COST]) W = np.diag([0.0, X_EGO_E2E_COST, 0., J_EGO_COST])
Ws = np.tile(W[None], reps=(N,1,1)) Ws = np.tile(W[None], reps=(N,1,1))
self.solver.cost_set_slice(0, N, 'W', Ws, api='old') self.solver.cost_set_slice(0, N, 'W', Ws, api='old')
# Setting the slice without the copy make the array not contiguous,
# causing issues with the C interface.
self.solver.cost_set(N, 'W', np.copy(W[:COST_E_DIM, :COST_E_DIM])) self.solver.cost_set(N, 'W', np.copy(W[:COST_E_DIM, :COST_E_DIM]))
# Set L2 slack cost on lower bound constraints
Zl = np.array([LIMIT_COST, LIMIT_COST, LIMIT_COST, 0.0]) Zl = np.array([LIMIT_COST, LIMIT_COST, LIMIT_COST, 0.0])
Zls = np.tile(Zl[None], reps=(N+1,1,1)) Zls = np.tile(Zl[None], reps=(N+1,1,1))
self.solver.cost_set_slice(0, N+1, 'Zl', Zls, api='old') self.solver.cost_set_slice(0, N+1, 'Zl', Zls, api='old')
@ -229,47 +243,34 @@ class LongitudinalMpc():
self.x0[1] = v self.x0[1] = v
self.x0[2] = a self.x0[2] = a
def extrapolate_lead(self, x_lead, v_lead, a_lead_0, a_lead_tau): def extrapolate_lead(self, x_lead, v_lead, a_lead, a_lead_tau):
lead_xv = np.zeros((N+1,2)) a_lead_traj = a_lead * np.exp(-a_lead_tau * (T_IDXS**2)/2.)
lead_xv[0, 0], lead_xv[0, 1] = x_lead, v_lead v_lead_traj = np.clip(v_lead + np.cumsum(T_DIFFS * a_lead_traj), 0.0, 1e8)
for i in range(1, N+1): x_lead_traj = x_lead + np.cumsum(T_DIFFS * v_lead_traj)
dt = T_IDXS[i] - T_IDXS[i-1] lead_xv = np.column_stack((x_lead_traj, v_lead_traj))
a_lead = a_lead_0 * math.exp(-a_lead_tau * (T_IDXS[i]**2)/2.)
x_lead += v_lead * dt
v_lead += a_lead * dt
if v_lead < 0.0:
a_lead = 0.0
v_lead = 0.0
lead_xv[i, 0], lead_xv[i, 1] = x_lead, v_lead
return lead_xv return lead_xv
def process_lead(self, lead): def process_lead(self, lead):
v_ego = self.x0[1] v_ego = self.x0[1]
if lead is not None and lead.status: if lead is not None and lead.status:
x_lead = lead.dRel x_lead = lead.dRel
v_lead = max(0.0, lead.vLead) v_lead = lead.vLead
a_lead = clip(lead.aLeadK, -10.0, 5.0) a_lead = lead.aLeadK
a_lead_tau = lead.aLeadTau
# MPC will not converge if immidiate crash is expected
# Clip lead distance to what is still possible to brake for
min_x_lead = ((v_ego + v_lead)/2) * (v_ego - v_lead) / (-MIN_ACCEL * 2)
if x_lead < min_x_lead:
x_lead = min_x_lead
if (v_lead < 0.1 or -a_lead / 2.0 > v_lead):
v_lead = 0.0
a_lead = 0.0
self.a_lead_tau = lead.aLeadTau
lead_xv = self.extrapolate_lead(x_lead, v_lead, a_lead, self.a_lead_tau)
else: else:
# Fake a fast lead car, so mpc can keep running in the same mode # Fake a fast lead car, so mpc can keep running in the same mode
x_lead = 50.0 x_lead = 50.0
v_lead = v_ego + 10.0 v_lead = v_ego + 10.0
a_lead = 0.0 a_lead = 0.0
self.a_lead_tau = _LEAD_ACCEL_TAU a_lead_tau = _LEAD_ACCEL_TAU
lead_xv = self.extrapolate_lead(x_lead, v_lead, a_lead, self.a_lead_tau)
# MPC will not converge if immediate crash is expected
# Clip lead distance to what is still possible to brake for
min_x_lead = ((v_ego + v_lead)/2) * (v_ego - v_lead) / (-MIN_ACCEL * 2)
x_lead = clip(x_lead, min_x_lead, 1e8)
v_lead = clip(v_lead, 0.0, 1e8)
a_lead = clip(a_lead, -10., 5.)
lead_xv = self.extrapolate_lead(x_lead, v_lead, a_lead, a_lead_tau)
return lead_xv return lead_xv
def set_accel_limits(self, min_a, max_a): def set_accel_limits(self, min_a, max_a):
@ -287,14 +288,14 @@ class LongitudinalMpc():
self.params[:,0] = interp(float(self.status), [0.0, 1.0], [self.cruise_min_a, MIN_ACCEL]) self.params[:,0] = interp(float(self.status), [0.0, 1.0], [self.cruise_min_a, MIN_ACCEL])
self.params[:,1] = self.cruise_max_a self.params[:,1] = self.cruise_max_a
# To consider a safe distance from a moving lead, we calculate how much stopping # To estimate a safe distance from a moving lead, we calculate how much stopping
# distance that lead needs as a minimum. We can add that to the current distance # distance that lead needs as a minimum. We can add that to the current distance
# and then treat that as a stopped car/obstacle at this new distance. # and then treat that as a stopped car/obstacle at this new distance.
lead_0_obstacle = lead_xv_0[:,0] + get_stopped_equivalence_factor(lead_xv_0[:,1]) lead_0_obstacle = lead_xv_0[:,0] + get_stopped_equivalence_factor(lead_xv_0[:,1])
lead_1_obstacle = lead_xv_1[:,0] + get_stopped_equivalence_factor(lead_xv_1[:,1]) lead_1_obstacle = lead_xv_1[:,0] + get_stopped_equivalence_factor(lead_xv_1[:,1])
# Fake an obstacle for cruise # Fake an obstacle for cruise, this ensures smooth acceleration to set speed
# TODO find cleaner way to write hacky fake cruise obstacle # when the leads are no factor.
cruise_lower_bound = v_ego + (3/4) * self.cruise_min_a * T_IDXS cruise_lower_bound = v_ego + (3/4) * self.cruise_min_a * T_IDXS
cruise_upper_bound = v_ego + (3/4) * self.cruise_max_a * T_IDXS cruise_upper_bound = v_ego + (3/4) * self.cruise_max_a * T_IDXS
v_cruise_clipped = np.clip(v_cruise * np.ones(N+1), v_cruise_clipped = np.clip(v_cruise * np.ones(N+1),

@ -1 +1 @@
d643d6ff47522e00d06035ab0cb9e14d1c0c0ae0 641884dca2102fe74e3164f8ce001cf3294b3255
Loading…
Cancel
Save